Browsing by Author "Alkan, Demet"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Bilgisayarda bireyselleştirilmiş sınıflama testinde çok kategorili sınıflama için sınıflama koşullarının incelenmesi(Bursa Uludağ Üniversitesi, 2023-09-09) Alkan, Demet; Doğan, NuriBu çalışmada R programlama dili ile çok kategorili sınıflama için Bilgisayarda Bireyselleştirilmiş Sınıflama Testi (BBST) kullanıldığında test etkililiğinin ve ölçme kesinliğinin sınıflama kriterleri, madde seçme yöntemleri, yetenek kestirim yöntemleri ve iki, üç, dört kategorili sınıflama kategori sayısı ile nasıl değiştiği araştırılmıştır. Simülasyonla iki kategorili, tek boyutlu 500 madde ve 1000 kişilik veri ile. 36 koşul belirlenmiştir. Tüm koşullar için 25 tekrarın ortalaması alınmıştır. Araştırma sonunda sınıflama kategori sayısı arttıkça Ortalama Test Uzunluğunun (OTU) arttığı, Ortalama Sınıflama Doğruluğu (OSD) azaldığı görülmüştür. Ortalama Hatanın Karekökü (RMSE), Ortalama Mutlak Hata (OMH), Yanlılık ve Gerçek Yetenekler ile Kestirilen Yetenekler Arasındaki Korelasyon (r) değerlerinin azaldığı anlaşılmıştır. OTU için Güven Aralığı (GA) sınıflama kriteri OSD, yanlılık, korelasyon, OMH için Ardışık Olasılık Oran Testi (AOOT) sınıflama kriterinin performansının daha etkili olduğu görülmüştür. Genelleştirilmiş Olabilirlik Oran (GOO) sınıflama kriterinin OTU bakımından GA kriterine benzer sonuçlar, mutlak hata yönünden ise AOOT sınıflama kriteri ile benzer sonuçlar oluşturduğu görülmüştür. Yetenek kestirim yöntemleri OSD ve OTU açısından benzer performans göstermiştir. Kesme Noktası (KN) temelli madde seçme yöntemleri Kestirilen Yetenek (KY) temelli madde seçme yöntemlerine göre test etkililiği ve ölçme kesinliği açısından daha etkili performans gösterdiği belirlenmiştir.