Browsing by Author "Aybek, Ali"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Kahramanmaraş ilinde bazı tarımsal atıkların biyogaz enerji potansiyelinin belirlenerek sayısal haritalarının oluşturulması(Uludağ Üniversitesi, 2015-06-26) Aybek, Ali; Üçok, Serdar; Bilgili, M. Emin; İspir, M. AliGünümüzde fosil yakıtların gittikçe azalması, yenilenebilir enerji kaynaklarının önemini arttırmıştır. Yenilenebilir enerji kaynaklarından biri de biyogazdır. Biyogazın üretim ve kullanılması; bitkisel ve hayvansal atıklardan kaynaklanan çevre problemleri de göz önüne alındığında, sürdürülebilir kalkınma açısından da büyük önem taşımaktadır. Bu çalışmada, TUIK 2014 verileri kullanılarak, Kahramanmaraş ili bazında hayvansal ve bazı bitkisel atıkların biyogaz potansiyeli belirlenerek haritalandırılmış ve konuya ilişkin yerel ölçekte sürdürülebilir çözümler oluşturulmaya çalışılmıştır. İl genelinde tarımsal atıklardan elde edilebilecek yıllık toplam biyogaz enerji potansiyeli 2 177 TJ/yıl’dır. Bu enerjinin yaklaşık %95’ini hayvansal atıklar oluşturmaktadır. Biyogaz enerjisinin ilçelere göre dağılımı, büyükten küçüğe doğru sırasıyla; Elbistan, Afşin, Pazarcık, Türkoğlu, Dulkadiroğlu, Onikişubat, Göksun, Andırın, Ekinözü, Çağlayancerit ve Nurhak şeklindedir.Item PM10, PM2.5, AND PM1 concentrations and health effects in textile factories(Parlar Scientific Publications (PSP), 2018) Aybek, Ali; Arslan, Selçuk; Uludağ Üniversitesi/Mühendislik Fakültesi/Biyosistem Mühendisliği Bölümü.This study aimed to determine particulate matter (PM) concentrations and the health complaints of workers in spinning and weaving factories. PM2.5 concentrations in spinning factories were greater than the threshold limit value. PM1 concentrations were also above TLV set for PM2.5. The sum of fine and very fine dust concentration was therefore found to be very high in spinning factories. PM10 and PM2.5 concentrations were less than the limit (750 mu g m(-3)) in weaving factories. As a result, workers had complaints about chest tightness, phylem, breathless, and coughing in spinning factories, which could be due to high PM2.5 concentrations. In weaving factories, the workers did not have complaints about tightness in the chest and coughing, which should have resulted from low PM10 and PM2.5 concentrations.Item Spline regression modelling of PTO performance of tractor fuelled with different biodiesels(Chinese Acad Agricultural Engineering, 2017-05) Aybek, Ali; Üçok, Serdar; Üçgül, Mustafa; Aslan, Selçuk; Uludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü.; 0000-0001-8528-7490; T-2708-2018; 7006604572The objective of this study was to investigate the possibility of fitting spline regression models for power take-off (PTO) performance characteristics of an agricultural tractor tested with four different fuels, including diesel fuel (B0) and three biodiesel blends made of canola oil (B10: 10% biodiesel + 90% petro-diesel blend; B20: 20% biodiesel + 90% petro-diesel blend; B30: 30% biodiesel + 90% petro-diesel blend). The performance characteristics evaluated were PTO power, engine torque, engine fuel consumption, and specific fuel consumption. Due to sharp slopes in measured quantities around the nominal engine speed (2200 r/min), compared to the standard regression method, the spline regression models suited well to the experimental data with coefficient of determination R-2= 0.99 for PTO power and engine torque. R-2 varied between 0.97 and 0.99 for fuel consumption and 0.91 and 0.95 for specific fuel consumption. The weaker correlation found for specific fuel consumption could be attributed to profound fluctuations in measured data causing atypical pattern in the corresponding graphs around the nominal engine speed. It was concluded that splines were useful to accurately predict the measured PTO power and engine torque. Neither standard methods nor splines were sufficient to obtain very good regression models for specific fuel consumption.