Browsing by Author "Ekinci, A."
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Generalized integral inequalities for m-convex functions(American Institute of Physics, 2016) Ekinci, Alper; Aslan, I.; Bayrak, Y.; Akdemir, A. O.; Ekinci, A.; Polat, K.; Dadaşoğlu, F.; Türkoğlu, E. A.; Özdemir, M. Emin; Uludağ Üniversitesi/Eğitim Fakültesi.; AAH-1091-2021; 22734889600In this paper, we prove some new inequalities for the functions whose derivatives in absolute values are m-convex. We obtain generalized inequalities which have the property of giving Hadamard, Ostrowski and Simpson type results by changing parameter.Item Generalized integral inequalities for m-convex functions(American Institute of Physics, 2016) Ekinci, Alper; Aslan, I.; Bayrak, Y.; Akdemir, A. O.; Ekinci, A.; Polat, K.; Dadaşoğlu, F.; Türkoğlu, E. A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi.; AAH-1091-2021; 22734889600In this paper, we prove some new inequalities for the functions whose derivatives in absolute values are m-convex. We obtain generalized inequalities which have the property of giving Hadamard, Ostrowski and Simpson type results by changing parameter.Item Grüss type inequalities involving new conformable fractional integral operators(Amer Inst Physics, 2018) Set, Erhan; Mumcu, İlker; Sarıkaya, M. Z.; Akdemir, A. O.; Ekinci, A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi/Matematik Öğretmenliği Bölümü.; AAH-1091-2021; 22734889600A number of Gruss type inequalities involving various fractional integral operators have, recently, been presented. Here, motivated essentially by the earlier works and their applications in diverse research subjects, we aim to establish several Gruss type inequalities involving generalized new conformable fractional integral operator.Item (h, m) - Convex functions on delta = [a, b] x [c, d] and hadamard-type integral inequality(Amer Inst Physics, 2017) Akdemir, Ahmet Ocak; Ekinci, A.; Han, I.; Set, E.; Dadaşoglu, F.; Karagöz, K.; Öztekin, A.; Özdemir, Muhammet Emin; Uludağ Üniversitesi/Eğitim Fakültesi/Matematik Öğretmenliği Bölümü.; AAH-1091-2021; 22734889600In this paper, we define (h, m) convex functions on Delta = [a, b] x [c, d] and obtain sonic properties of this new class of functions. We also prove a new generalization of Hadamard inequality on the co-ordinates.Item New generalized inequalities of Hermite-Hadamard type for quasi-convex functions(Amer Institute of Physics, 2016) Yıldız, Çetin; Aslan, I.; Bayrak, Y.; Akdemir, A. O.; Ekinci, A.; Polat, K.; Dadaşoğlu, F.; Türkoğlu, E. A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi.; AAH-1091-2021; 22734889600In this paper, new integral inequalities of Hermite-Hadamard type are developed for n-times differentiable quasi-convex functions.Item New inequalities and applications concerning with second derivative of a function(American Institute of Physics, 2016) Gürbüz, Mustafa; Saykal, Faruk; Aslan, I.; Bayrak, Y.; Akdemir, A. O.; Ekinci, A.; Polat, K.; Dadaşoğlu, F.; Türkoğlu, E. A.; Özdemir, M. Emin; Uludağ Üniversitesi Üniversite/Eğitim Fakültesi.; AAH-1091-2021; 22734889600In this paper, we achieved some new integral inequalities concerning with second derivative of a function. To do this, we used a lemma in [14] for s-convexity (in the second sense) and quasi convexity. We also gave some applications by using our main results.Item New integral inequalities for co-ordinated m-convex functions(American Institute of Physics, 2016-04-18) Akdemir, Ahmet Ocak; Aslan, I.; Bayrak, Y.; Akdemir, A. O.; Ekinci, A.; Polat, K.; Dadaşoğlu, F.; Türkoğlu, E. A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi/Matematik Öğretmenliği Bölümü.; AAH-1091-2021; 22734889600In this paper, we prove some new integral inequalities for co-ordinated m -convex functions by using a new integral identity and basic definitions. We also give some reduced results by selecting special value of parameter m.Item On Hadamard-type inequalities for co-ordinated r -convex functions(Amer, 2017-04-25) Ekinci, Alper; Akdemir, Ahmet Ocak; Akdemir, A. O.; Ekinci, A.; Han, I.; Set, E.; Dadaşoglu, F.; Karagöz, K.; Öztekin, A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi/Matematik Öğretmenliği Bölümü.; AAH-1091-2021; 22734889600In this paper we defined r-convexity on the co-ordinates and we established some Hadamard-Type inequalities.Item On new fractional Hermite-Hadamard type inequalities for n-time differentiable quasi-convex functions and P-functions(Amer Inst Physics, 2017) Set, Erhan; Alan, E. Aykan; Akdemir, A. O.; Ekinci, A.; Han, I.; Set, E.; Dadaşoğlu, F.; Karagöz, K.; Öztekin, A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi/İlköğretim Bölümü.; AAH-1091-2021; 22734889600In this article, by using the Hölder's inequality and power mean inequality the authors establish several inequalities of Hermite-Hadamard type for n- time differentiable quasi-convex functions and P- functions involving Riemann-Liouville fractional integrals.Item On new Simpson type inequalities for quasi-convex functions via Riemann-Liouville integrals(Amer Inst Physic, 2016) Set, Erhan; Uygun, Nazlı; Aslan, I.; Bayrak, Y.; Akdemir, A. O.; Ekinci, A.; Polat, K.; Dadaşoğlu, F.; Türkoğlu, E. A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi/İlköğretim Bölümü.; AAH-1091-2021; 22734889600In this note, some new Simpson-type inequalities for functions whose derivatives of absolute value are quasi-convex functions with the help of Riemann-Liouville fractional integrals are obtained. Also by special selections of n and alpha we give some reduced results.Item Simpson type inequalities via φ-convexity(Amer Institute of Physics, 2016) Ardıç, Merve Avcı; Akdemir, A. Ocak; Aslan, I.; Bayrak, Y.; Akdemir, A. O.; Ekinci, A.; Polat, K.; Dadaşoğlu, F.; Türkoğlu, E. A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi.; 22734889600In this paper, we obtain some Simpson type inequalities for functions whose derivatives in absolute value are phi-convex.Item Some Hermite-Hadamard type inequalities for (α, m)-convex functions on the co-ordinates(American Institute of Physics, 2016) Akdemir, Ahmet Ocak; Aslan, I.; Bayrak, Y; Ekinci, A.; Polat, K.; Dadaşoğlu, F.; Türkoğlu, E. A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi/Matematik Öğretmenliği Bölümü.; AAH-1091-2021; 22734889600In this study, we prove some Hermite-Hadamard type integral inequalities for (alpha, m) -convex functions on the co-ordinates on Delta.