Browsing by Author "Kopar, Mehmet"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Publication Composite disc optimization using hunger games search optimization algorithm(Walter de Gruyter Gmbh, 2023-06-29) Kopar, Mehmet; Yıldız, Ali Riza; Kopar, Mehmet; YILDIZ, ALİ RIZA; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü; 0000-0003-1790-6987; F-7426-2011; DBQ-9849-2022It has been interesting in industrial applications due to the advantages provided by laminated composite applications. Composite materials are of great importance in design optimization due to the advantages they provide, such as lightweight, high strength value, and design flexibility. Finite element programs and artificial intelligence optimization techniques developed in recent years are effectively used in the design of composite materials. In order to optimize the angular orientations of the composite disc, analyses are made using the finite element program. Particle swarm optimization algorithm (PSO), genetic algorithm (GA), and hunger games search optimization algorithm(HGS) are used to determine the best stacking angle value on the disc plate using the analysis data obtained after the completion of the analyses. When the results obtained were examined, it was determined that the results obtained from particle swarm optimization, genetic algorithm, and hunger games search optimization techniques showed that hunger games search optimization algorithm gives better results as other and HGS could be used for the stacking of composite materials.Publication Experimental investigation of mechanical properties of PLA, ABS, and PETG 3-d printing materials using fused deposition modeling technique(Walter De Gruyter Gmbh, 2023-09-08) Kopar, Mehmet; Yıldız, Ali Rıza; Kopar, Mehmet; YILDIZ, ALİ RIZA; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü.; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü,; 0000-0003-1790-6987; F-7426-2011; DBQ-9849-2022In recent years, there has been a logarithmic interest in three-dimensional printing technologies. This technique has made it possible to make more intricately shaped parts of superior quality, allowing for use in a variety of industries, including aircraft, automobiles, and ships. This study characterized the materials and assessed the mechanical features of PLA, PETG, and ABS materials generated at various raster angles. The strength ratios of the various materials have been found to fluctuate when the raster angles change. The PLA parts created at a picture raster angle of 45 degrees had the maximum tensile strength. ABS material created with a picture raster angle of 45 degrees has been shown to have the best energy absorption, and PLA material made with a raster angle of 45 degrees has the best performance compressive strength. When bending strength was evaluated, it was found that samples of ABS made with a raster angle of 0-90 degrees had the greatest value. The SEM micrographs were obtained, and the tensile test was used to examine the fracture behavior of the materials. As a result, it has been found that materials created using various raster angles can have various strength values from one another.Publication Optimum design of a composite drone component using slime mold algorithm(Walter De Gruyter Gmbh, 2023-09-25) YILDIZ, ALİ RIZA; YILDIZ, BETÜL SULTAN; Kopar, Mehmet; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü.; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.; 0000-0003-1790-6987; AAL-9234-2020; F-7426-2011Composite materials have a wide range of applications in many industries due to their manufacturability, high strength values, and light filling. The sector where composite materials are mostly used is the aviation industry. Today, as a result of the development of aviation systems, drones have started to be actively used, and many studies have started to be carried out to mitigate them. In this study, the subcarrier part, which is part of the drone, was designed using glass and carbon fiber-reinforced composite materials. Using the data obtained at the end of the analysis, the stacking angle with the optimal displacement and stress value was determined by using the genetic algorithm (GA), gray wolf algorithm (GWO), and slime mold optimization (SMO) techniques in order to develop a carrier with a minimum displacement and stress value of more than 60 MPa. As a result of the optimization, it was determined that artificial intelligence algorithms could be used effectively in determining the stacking angle of composite materials, and the optimum values were determined in the slime mold algorithm.Publication Optimum design of a seat bracket using artificial neural networks and dandelion optimization algorithm(Walter de Gruyter Gmbh, 2023-10-13) Erdaş, Mehmet Umut; Kopar, Mehmet; Yıldız, Betül Sultan; Yıldız, Ali Rıza; Erdaş, Mehmet Umut; Kopar, Mehmet; YILDIZ, BETÜL SULTAN; YILDIZ, ALİ RIZA; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü.; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.; 0000-0003-1790-6987; AAH-6495-2019; F-7426-2011; CNV-1200-2022; DBQ-9849-2022Nature-inspired metaheuristic algorithms are gaining popularity with their easy applicability and ability to avoid local optimum points, and they are spreading to wide application areas. Meta-heuristic optimization algorithms are used to achieve an optimum design in engineering problems aiming to obtain lightweight designs. In this article, structural optimization methods are used in the process of achieving the optimum design of a seat bracket. As a result of topology optimization, a new concept design of the bracket was created and used in shape optimization. In the shape optimization, the mass and stress values obtained depending on the variables, constraint, and objective functions were created by using artificial neural networks. The optimization problem based on mass minimization is solved by applying the dandelion optimization algorithm and verified by finite element analysis.Publication The effect of manufacturing parameters on various composite plates under ballistic impact(Sage Publications Ltd, 2022-12-01) Arı, Ali; KARAHAN, MEHMET; Kopar, Mehmet; Ahrarı, Mazyar; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü.; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.; 0000-0003-3915-5598; AAK-4298-2021; AEL-5372-2022In this study, the usability of several composite plates in level III and level IV body armors were examined, along with the ballistic resistance, protection level, and production parameters of each plate. For level III protection, composite panels are made using the heat pressing method under various pressures, and for level IV composites, ceramic plates of various thicknesses are reinforced on the back with various composite materials. Ballistic tests using the NIJ standards were performed on the created composite panels. There were delaminations between the layers as a result of the ballistic test in the level III protective panels produced at 140 bar pressure, but there was no puncture in the panels produced at 250 bar pressure, and the depth of trauma was reduced to a minimum. These observations were made using samples produced at 90 bar pressure under controlled conditions. Level IV panels were subjected to dry and wet ballistic tests, and the results of these tests showed that K-flex reinforced ceramics were impervious to punctures. It has been found that aramid-reinforced epoxy ceramic panels and UD H62 reinforced ceramics have superior ballistic qualities and are 6% lighter.