2016 Cilt 30 Sayı 1
Permanent URI for this collectionhttps://hdl.handle.net/11452/2289
Browse
Browsing by Subject "ANN"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Referans evapotranspirasyonun zaman, konum, bağıl nem ve rüzgâr hızı girdileri kullanılarak yapay sinir ağlarıyla tahmin edilmesi(Uludağ Üniversitesi, 2016-05-17) Aksu, NecatiBu çalışma ile sınırlı olan su kaynaklarının planlanmasında ve yönetiminde önem arz eden referans evapotranspirasyonun (ET0) kolay ve ekonomik olarak tahmini amaçlanmıştır. Bu doğrultuda, Yapay Sinir Ağlarının (YSA) karmaşık sebep-sonuç ilişkilerini çözebilme yeteneğinden yararlanmak suretiyle, temin edilmesi çeşitli zorluklar içeren ve ayrıca yüksek maliyet ve uzun zaman gerektiren birçok meteorolojik girdi yerine, bu girdileri şekillendiren doğal veriler ve daha az meteorolojik veri kullanılarak ET0 tahmin edilmiştir. Bu kapsamda; zaman, enlem, yükseklik ve denize mesafe gibi konum değişkenleriyle, bağıl nem ve rüzgâr hızı gibi meteorolojik değişkenler girdi olarak, FAO PM ET0 değerleri de çıktı (hedef) olarak kullanılan farklı yapı ve özelliklerde çok sayıda ağ projesi oluşturulmuştur. Bu projeler Levenberg Marquardt (LM) algoritması ve farklı yinelemelerle eğitilerek test edilmiş ve tahmin başarısı en yüksek YSA belirlenmiştir. Belirlenen ağın Ortalama Mutlak Hatası (MAE) = 0.11 mm gün-1 ; Ortalama Mutlak Yüzde Hatası (MAPE) = % 4.3; Belirlilik Katsayısı (R2 ) = 0.99; Ortalama Göreceli Hatası (OGH) = 0.04; Kök Ortalama Kare Hatası (KOKH) = 0.15 mm gün-1 ve NS katsayısı 0.99 bulunmuştur. Netice itibariyle, güvenle kullanılabilir doğrulukta bir sonuç elde edilmiştir.