Publication:
Genetic algorithm with local search for the unrelated parallel machine scheduling problem with sequence-dependent set-up times

dc.contributor.buuauthorYılmaz, Duygu Eroğlu
dc.contributor.buuauthorÖzmutlu, Hüseyin Cenk
dc.contributor.buuauthorÖzmutlu, Seda
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.researcheridAAH-1079-2021tr_TR
dc.contributor.researcheridAAH-4480-2021tr_TR
dc.contributor.researcheridABH-5209-2020tr_TR
dc.contributor.scopusid56120864000tr_TR
dc.contributor.scopusid6603061328tr_TR
dc.contributor.scopusid6603660605tr_TR
dc.date.accessioned2022-08-25T06:37:24Z
dc.date.available2022-08-25T06:37:24Z
dc.date.issued2014
dc.description.abstractIn this paper, a genetic algorithm (GA) with local search is proposed for the unrelated parallel machine scheduling problem with the objective of minimising the maximum completion time (makespan). We propose a simple chromosome structure consisting of random key numbers in a hybrid genetic-local search algorithm. Random key numbers are frequently used in GAs but create additional difficulties when hybrid factors are implemented in a local search. The best chromosome of each generation is improved using a local search during the algorithm, but the better job sequence (which might appear during the local search operation) must be adapted to the chromosome that will be used in each successive generation. Determining the genes (and the data in the genes) that would be exchanged is the challenge of using random numbers. We have developed an algorithm that satisfies the adaptation of local search results into the GAs with a minimum relocation operation of the genes' random key numbers - this is the main contribution of the paper. A new hybrid approach is tested on a set of problems taken from the literature, and the computational results validate the effectiveness of the proposed algorithm.en_US
dc.identifier.citationYılmaz, D. E. vd. (2014). "Genetic algorithm with local search for the unrelated parallel machine scheduling problem with sequence-dependent set-up times". International Journal of Production Research, 52(19), 5841-5856.en_US
dc.identifier.endpage5856tr_TR
dc.identifier.issn0020-7543
dc.identifier.issn1366-588X
dc.identifier.issue19tr_TR
dc.identifier.scopus2-s2.0-84906783905tr_TR
dc.identifier.startpage5841tr_TR
dc.identifier.urihttps://doi.org/10.1080/00207543.2014.920966
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/00207543.2014.920966
dc.identifier.urihttp://hdl.handle.net/11452/28355
dc.identifier.volume52tr_TR
dc.identifier.wos000341573100018
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.relation.journalInternational Journal of Production Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectParallel machine schedulingen_US
dc.subjectSequence-dependent set-up timesen_US
dc.subjectGenetic algorithmsen_US
dc.subjectMinimizeen_US
dc.subjectJobsen_US
dc.subjectMakespanen_US
dc.subjectEngineeringen_US
dc.subjectOperations research & management scienceen_US
dc.subjectGenesen_US
dc.subjectMachineryen_US
dc.subjectRandom number generationen_US
dc.subjectScheduling algorithmsen_US
dc.subjectChromosome structureen_US
dc.subjectCompletion timeen_US
dc.subjectComputational resultsen_US
dc.subjectLocal search operationen_US
dc.subjectSearch algorithmsen_US
dc.subjectSequence-dependent set-up timeen_US
dc.subjectUnrelated parallel machinesen_US
dc.subject.scopusParallel Machine Scheduling; Genetic Algorithm; Scheduling Problemen_US
dc.subject.wosEngineering, industrialen_US
dc.subject.wosEngineering, manufacturingen_US
dc.subject.wosOperations research & management scienceen_US
dc.titleGenetic algorithm with local search for the unrelated parallel machine scheduling problem with sequence-dependent set-up timesen_US
dc.typeArticle
dc.wos.quartileQ2en_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: