Cephe paneli üretimi için ileri fiziko-mekanik özelliklere sahip sürdürülebilir hafif beton karışımların geliştirilmesi
Date
2024-07-10
Authors
Beytekin, Hatice Elif
Journal Title
Journal ISSN
Volume Title
Publisher
Bursa Uludağ Üniversitesi
Abstract
Bu tez çalışmasında, hafif beton karışımlarının çevresel etkilerinin azaltılması ve cephe panellerinde kullanımı için performansının optimize edilmesi amaçlanmıştır. Tez çalışması 3 aşamadan oluşmaktadır. Çalışmanın ilk aşamasında hafif beton karışımlarına, farklı uzunluklara sahip polipropilen, cam ve poliamid lifleri %0,25, %0,50 ve %0,75 kullanım oranlarında ilave edilerek 22 adet hafif beton karışım hazırlanmıştır. Karışımlarının taze ve sertleşmiş hal özellikleri incelenerek ve en uygun lif kombinasyonu araştırılmıştır. Çalışmanın ikinci aşamasında, tez çalışmasının ilk aşamasında belirlenen, ince agrega olarak %100 kireçtaşı içeren kontrol karışımına (K), ince agreganın hacimce farklı oranlarında pomza, genleştirilmiş perlit ve geri dönüştürülmüş beton agregası ikame edilerek toplam 15 farklı hafif beton karışımı hazırlanmıştır. Karışımların, ağırlık/dayanım ve ısı yalıtımı performansı açısından optimum ince agrega kullanım oranları belirlenmiştir. Çalışmanın son aşamasında ise, hafif beton karışımlarında bağlayıcı olarak kullanılan çimento miktarının azaltılması hedeflenmiştir. Bu amaçla, daha önceki aşamalarda en iyi performans gösteren hafif beton karışımlardaki çimento miktarı ağırlıkça %20, %40 ve %60 oranlarında yüksek fırın cürufu ile ikame edilerek dayanım ve ısı iletkenlik özellikleri araştırılmıştır. Çalışma kapsamında üretilen tüm karışımlarda su/bağlayıcı oranı, bağlayıcı içeriği ve çökme değeri sırasıyla 0,46, 300 kg/m³ ve 40±20 mm olarak sabit tutulmuştur. Karışımlarda istenilen işlenebilirliği sağlamak için tek su azaltıcı katkı kullanılmıştır. Elde edilen veriler ışığında hafif beton cephe panelleri için polipropilen lifinin daha üstün performans gösterdiği ve optimum lif kullanım oranının %0,25 olduğu belirlenmiştir. Hafif beton karışımlarında, ağırlık/dayanım ve ısı yalıtımı performansı açısından, ince agrega olarak %40 geri dönüştürülmüş beton agregası ve %60 oranında pomza içeren karışımın optimum performansı sergilediği tespit edilmiştir. Agrega içeriğinden bağımsız olarak yüksek fırın cürufu kullanımı ile ısı iletkenlik değerinin azaldığı tespit edilmiştir. Optimum yüksek fırın cürufu kullanım oranı %40 olarak belirlenmiştir.
In this thesis study, it is aimed to reduce the environmental impact of lightweight concrete mixtures and optimize their performance for use in façade panels. The thesis consists of three stages. In the first stage of the study, 22 lightweight concrete mixtures were prepared by adding polypropylene, glass, and polyamide fibers with different lengths at usage rates of 0.25%, 0.50%, and 0.75%. The fresh and hardened properties of the mixtures were examined, and the most suitable fiber combination was investigated. In the second stage of the study, 15 different lightweight concrete mixtures were prepared by replacing the control mixture (K), which contains 100% limestone as fine aggregate, with pumice, expanded perlite, and recycled concrete aggregate at different volume ratios. The optimum fine aggregate usage rates were determined in terms of weight/strength and thermal insulation performance. In the final stage of the study, it was aimed to reduce the amount of cement used as a binder in lightweight concrete mixtures. For this purpose, the cement amount in the best-performing lightweight concrete mixtures from the previous stages was replaced with blast furnace slag at rates of 20%, 40%, and 60% by weight, and the strength and thermal conductivity properties were investigated.Within the scope of this study, the water/binder ratio, binder content, and slump value for all mixtures produced were kept constant at 0.46, 300 kg/m³, and 40±20 mm, respectively. A single type water-reducing admixture was used in the mixtures to ensure the desired workability. Based on the obtained data, it was determined that polypropylene fiber showed superior performance for lightweight concrete façade panels, and the optimum fiber usage rate was 0.25%. In terms of weight/strength and thermal insulation performance in lightweight concrete mixtures, it was found that the mixture containing 40% recycled concrete aggregate and 60% pumice as fine aggregate showed optimum performance. Regardless of the aggregate content, it was determined that the use of blast furnace slag reduced the thermal conductivity value. The optimum usage rate of blast furnace slag was determined to be 40%.
In this thesis study, it is aimed to reduce the environmental impact of lightweight concrete mixtures and optimize their performance for use in façade panels. The thesis consists of three stages. In the first stage of the study, 22 lightweight concrete mixtures were prepared by adding polypropylene, glass, and polyamide fibers with different lengths at usage rates of 0.25%, 0.50%, and 0.75%. The fresh and hardened properties of the mixtures were examined, and the most suitable fiber combination was investigated. In the second stage of the study, 15 different lightweight concrete mixtures were prepared by replacing the control mixture (K), which contains 100% limestone as fine aggregate, with pumice, expanded perlite, and recycled concrete aggregate at different volume ratios. The optimum fine aggregate usage rates were determined in terms of weight/strength and thermal insulation performance. In the final stage of the study, it was aimed to reduce the amount of cement used as a binder in lightweight concrete mixtures. For this purpose, the cement amount in the best-performing lightweight concrete mixtures from the previous stages was replaced with blast furnace slag at rates of 20%, 40%, and 60% by weight, and the strength and thermal conductivity properties were investigated.Within the scope of this study, the water/binder ratio, binder content, and slump value for all mixtures produced were kept constant at 0.46, 300 kg/m³, and 40±20 mm, respectively. A single type water-reducing admixture was used in the mixtures to ensure the desired workability. Based on the obtained data, it was determined that polypropylene fiber showed superior performance for lightweight concrete façade panels, and the optimum fiber usage rate was 0.25%. In terms of weight/strength and thermal insulation performance in lightweight concrete mixtures, it was found that the mixture containing 40% recycled concrete aggregate and 60% pumice as fine aggregate showed optimum performance. Regardless of the aggregate content, it was determined that the use of blast furnace slag reduced the thermal conductivity value. The optimum usage rate of blast furnace slag was determined to be 40%.
Description
Keywords
Hafif beton, Hafif beton cephe panelleri, Enerji etkin tasarım, Sürdürülebilir beton, Isı iletkenllik performansı, Lightweight concrete, Lightweight concrete facade panels, Energy efficient design, Sustainable concrete, Thermal conductivity performance