Browsing by Author "Ekinci, Alper"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Generalized integral inequalities for convex functions(Element, 2016) Ekinci, Alper; Özdemir, M. Emin; Uludağ Üniversitesi/Eğitim Fakültesi.; AAH-1091-2021; 22734889600In this paper, we prove some general inequalities for convex functions and give Ostrowski, Hadamard and Simpson type results for a special case of these inequalities.Item Generalized integral inequalities for m-convex functions(American Institute of Physics, 2016) Ekinci, Alper; Aslan, I.; Bayrak, Y.; Akdemir, A. O.; Ekinci, A.; Polat, K.; Dadaşoğlu, F.; Türkoğlu, E. A.; Özdemir, M. Emin; Uludağ Üniversitesi/Eğitim Fakültesi.; AAH-1091-2021; 22734889600In this paper, we prove some new inequalities for the functions whose derivatives in absolute values are m-convex. We obtain generalized inequalities which have the property of giving Hadamard, Ostrowski and Simpson type results by changing parameter.Item Generalized integral inequalities for m-convex functions(American Institute of Physics, 2016) Ekinci, Alper; Aslan, I.; Bayrak, Y.; Akdemir, A. O.; Ekinci, A.; Polat, K.; Dadaşoğlu, F.; Türkoğlu, E. A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi.; AAH-1091-2021; 22734889600In this paper, we prove some new inequalities for the functions whose derivatives in absolute values are m-convex. We obtain generalized inequalities which have the property of giving Hadamard, Ostrowski and Simpson type results by changing parameter.Item Hadamard type inequalities for m -convex and (α, m)-convex functions via fractional integrals(Amer Inst Physics, 2018) Ardıç, Merve Avcı; Ekinci, Alper; Akdemir, Ahmet Ocak; Tosun, M.; Ersoy, S.; İlarslan, K.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi.; AAH-1091-2021; 22734889600In this paper, we established some new Hadamard-type integral inequalities for functions whose derivatives of absolute values are m-convex and (alpha, m) convex functions via Riemann-Liouville fractional integrals.Item On Hadamard-type inequalities for co-ordinated r -convex functions(Amer, 2017-04-25) Ekinci, Alper; Akdemir, Ahmet Ocak; Akdemir, A. O.; Ekinci, A.; Han, I.; Set, E.; Dadaşoglu, F.; Karagöz, K.; Öztekin, A.; Özdemir, Muhamet Emin; Uludağ Üniversitesi/Eğitim Fakültesi/Matematik Öğretmenliği Bölümü.; AAH-1091-2021; 22734889600In this paper we defined r-convexity on the co-ordinates and we established some Hadamard-Type inequalities.Publication On the integral inequalities for riemann-liouville and conformable fractional integrals(Birkhauser, 2018-01-01) Akdemir, Ahmet Ocak; Set, Erhan; Ekinci, Alper; Agarwal, P; Dragomir, SS; Jleli, M; Samet, B; Özdemir, M. Emin; ÖZDEMİR, MUHAMET EMİN; Bursa Uludağ Üniversitesi/Eğitim Fakültesi/Matematik Öğretmenliği Anabilim Dalı.; Agarwal, P; Dragomir, SS; Jleli, M; Samet, B; 0000-0003-2466-0508; AAH-1091-2021; HKF-3376-2023; HKF-3391-2023; Q-2400-2019An integral operator is sometimes called an integral transformation. In the fractional analysis, Riemann-Liouville integral operator (transformation) of fractional integral is defined asS-alpha(x) = 1/Gamma(x) integral(x)(0) (x - t)(alpha-1) f(t)dtwhere f(t) is any integrable function on [0, 1] and alpha > 0, t is in domain of f.Publication Several new integral inequalities via caputo fractional integral operators(Univ Nis, Fac Sci Math, 2023-01-01) Butt, Saad Ihsan; Ekinci, Alper; Nadeem, Mehroz; Özdemir, M. Emin; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi.; 0000-0001-7192-8269; ITT-3431-2023; HKF-3391-2023In this paper, we establish several new integral inequalities including Caputo fractional derivatives for quasi-convex, s-Godunova-Levin convex. In order to obtain our results, we have used fairly elementary methodology by using the classical inequalities such that Holder inequality, Power mean inequality and Weighted Holder inequality. This work is motivated by Farid et al in [17]. Especially we aim to obtain inequalities involving only right-sided Caputo-fractional derivative of order alpha.Item Some new integral inequalities for functions whose derivatives of absolute values are convex and concave(Institute of Applied Mathematics, 2019) Ekinci, Alper; Akdemir, Ahmet Ocak; Özdemir, M. Emin; Uludağ Üniversitesi/Eğitim Fakültesi/Matematik Bölümü.; 0000-0002-5992-094X; AAH-1091-2021In this paper, we prove some new inequalities for the functions whose derivatives' absolute values are convex and concave by dividing the interval [a, b] to n + 1 equal even sub-intervals. We obtain some new results involving intermediate values of vertical bar f'vertical bar in [a, b] by using some classical inequalities like Hermite-Hadamard, Holder and Power-Mean.Item Some new integral inequalities via riemann-liouville integral operators(Ministry Communications & High Technologies Republic Azerbaijan, 2019) Ekinci, Alper; Özdemir, Muhamet Emin; Bursa Uludağ Üniversitesi/Eğitim Fakültesi/Matematik ve Fen Bilimleri Eğitimi Bölümü.; AAH-1091-2021This paper aims to obtain new inequalities for the class of functions whose absolute values of first derivatives are convex on [a, b]. First we establish obtain a new integral identity by separating [a, b] to s equal subintervals. Then we some Hermite-Hadamard type inequalities involving intermediate values of vertical bar f'vertical bar by using Riemann-Liouville fractional operator. Also, we have given some results for special values of s and alpha.