Browsing by Author "Gurkan, Hakan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Clinical and molecular evaluation of MEFV gene variants in the Turkish population: a study by the National Genetics Consortium(Springer Heidelberg, 2022-01-31) Dundar, Munis; Fahrioglu, Umut; Yildiz, Saliha Handan; Bakir-Gungor, Burcu; Temel, Sehime Gulsun; Akin, Haluk; Artan, Sevilhan; Cora, Tulin; Sahin, Feride Iffet; Dursun, Ahmet; Sezer, Ozlem; Gurkan, Hakan; Erdogan, Murat; Gunduz, C. Nur Semerci; Bisgin, Atil; Ozdemir, Ozturk; Ulgenalp, Ayfer; Percin, E. Ferda; Yildirim, Malik Ejder; Tekes, Selahaddin; Bagis, Haydar; Yuce, Huseyin; Duman, Nilgun; Bozkurt, Gokay; Yararbas, Kanay; Yildirim, Mahmut Selman; Arman, Ahmet; Mihci, Ercan; Eraslan, Serpil; Altintas, Zuhal Mert; Aymelek, Huri Sema; Ruhi, Hatice Ilgin; Tatar, Abdulgani; Ergoren, Mahmut Cerkez; Cetin, G. Ozan; Altunoglu, Umut; Caglayan, Ahmet Okay; Yuksel, Berrin; Ozkul, Yusuf; Saatci, Cetin; Kenanoglu, Sercan; Karasu, Nilgun; Dundar, Bilge; Ozcelik, Firat; Demir, Mikail; Siniksaran, Betul Seyhan; Kulak, Hande; Kiranatlioglu, Kubra; Baysal, Kubra; Kazimli, Ulviyya; Akalin, Hilal; Dundar, Ayca; Boz, Mehmet; Bayram, Arslan; Subasioglu, Asli; Colak, Fatma Kurt; Karaduman, Neslihan; Gunes, Meltem Cerrah; Kandemir, Nefise; Aynekin, Busra; Emekli, Rabia; Sahin, Izem Olcay; Ozdemir, Sevda Yesim; Onal, Muge Gulcihan; Senel, Abdurrahman Soner; Poyrazoglu, Muammer Hakan; Kisaarslan, Ayse Nur Pac; Gursoy, Sebnem; Baskol, Mevlut; Calis, Mustafa; Demir, Huseyin; Zararsiz, Gozde Erturk; Erdogan, Mujgan Ozdemir; Elmas, Muhsin; Solak, Mustafa; Ulu, Memnune Sena; Thahir, Adam; Aydin, Zafer; Atasever, Umut; Sag, Sebnem Ozemri; Aliyeva, Lamiya; Alemdar, Adem; Dogan, Berkcan; Erguzeloglu, Cemre Ornek; Kaya, Niyazi; Ozkinay, Ferda; Cogulu, Ozgur; Durmaz, Asude; Onay, Huseyin; Karaca, Emin; Durmaz, Burak; Aykut, Ayca; Cilingir, Oguz; Aras, Beyhan Durak; Gokalp, Ebru Erzurumluoglu; Arslan, Serap; Temena, Arda; Haziyeva, Konul; Kocagil, Sinem; Bas, Hasan; Susam, Ezgi; Keklikci, Ali Riza; Sarac, Elif; Kocak, Nadir; Nergiz, Suleyman; Terzi, Yunus Kasim; Dincer, Selin Akad; Baskin, Esra Sidika; Genc, Gunes Cakmak; Bahadir, Oguzhan; Sanri, Aslihan; Yigit, Serbulent; Tozkir, Hilmi; Yalcintepe, Sinem; Ozkayin, Nese; Kiraz, Aslihan; Balta, Burhan; Gonen, Gizem Akinci; Kurt, E. Emre; Ceylan, Gulay Gulec; Ceylan, Ahmet Cevdet; Erten, Sukran; Bozdogan, Sevcan Tug; Boga, Ibrahim; Yilmaz, Mustafa; Silan, Fatma; Kocabey, Mehmet; Koc, Altug; Cankaya, Tufan; Bora, Elcin; Bozkaya, Ozlem Giray; Ercal, Derya; Ergun, Mehmet Ali; Ergun, Sezen Guntekin; Duman, Yesim Sidar; Beyazit, Serife Busra; Uzel, Veysiye Hulya; Em, Serda; Cevik, Muhammer Ozgur; Eroz, Recep; Demirtas, Mercan; Firat, Cem Koray; Kabayegit, Zehra Manav; Altan, Mustafa; Mardan, Lamiya; Sayar, Ceyhan; Tumer, Sait; Turkgenc, Burcu; Karakoyun, Hilal Keskin; Tunc, Betul; Kuru, Seda; Zamani, Aysegul; Geckinli, Bilgen Bilge; Ates, Esra Arslan; Clark, Ozden Altiok; Toylu, Asli; Coskun, Mert; Nur, Banu; Bilge, Ilmay; Bayramicli, Oya Uygur; Emmungil, Hakan; Komesli, Zeynep; Zeybel, Mujdat; Gurakan, Figen; Tasdemir, Mehmet; Kebudi, Rejin; Karabulut, Halil Gurhan; Tuncali, Timur; Kutlay, Nuket Yurur; Kahraman, Cigdem Yuce; Onder, Nerin Bahceciler; Beyitler, Ilke; Kavukcu, Salih; Tulay, Pinar; Tosun, Ozgur; Tuncel, Gulten; Mocan, Gamze; Kale, Hamdi; Uyguner, Zehra Oya; Acar, Aynur; Altinay, Mert; Erdem, Levent; TEMEL, ŞEHİME GÜLSÜN; ÖZEMRİ SAĞ, ŞEBNEM; ALIYEVA, LAMIYA; ALEMDAR, ADEM; DOĞAN, BERKCAN; Ergüzeloğlu, Cemre Örnek; Kaya, Niyazi; Bursa Uludağ Üniversitesi/Tıp Fakültesi/Tıbbi Genetik Anabilim Dalı.; Bursa Uludağ Üniversitesi/Tıp Fakültesi/Histoloji ve Embriyoloji Anabilim Dalı.; Bursa Uludağ Üniversitesi/Sağlık Bilimleri Enstitüsü/Translasyonel Tıp Anabilim Dalı.; 0000-0001-8061-8131; AAG-8385-2021; AAH-8355-2021; CCG-4609-2022; HIZ-7332-2022; AAD-5249-2020; EXQ-7887-2022; FEL-0562-2022Familial Mediterranean fever (FMF) is a monogenic autoinflammatory disorder with recurrent fever, abdominal pain, serositis, articular manifestations, erysipelas-like erythema, and renal complications as its main features. Caused by the mutations in the MEditerranean FeVer (MEFV) gene, it mainly affects people of Mediterranean descent with a higher incidence in the Turkish, Jewish, Arabic, and Armenian populations. As our understanding of FMF improves, it becomes clearer that we are facing with a more complex picture of FMF with respect to its pathogenesis, penetrance, variant type (gain-of-function vs. loss-of-function), and inheritance. In this study, MEFV gene analysis results and clinical findings of 27,504 patients from 35 universities and institutions in Turkey and Northern Cyprus are combined in an effort to provide a better insight into the genotype-phenotype correlation and how a specific variant contributes to certain clinical findings in FMF patients. Our results may help better understand this complex disease and how the genotype may sometimes contribute to phenotype. Unlike many studies in the literature, our study investigated a broader symptomatic spectrum and the relationship between the genotype and phenotype data. In this sense, we aimed to guide all clinicians and academicians who work in this field to better establish a comprehensive data set for the patients. One of the biggest messages of our study is that lack of uniformity in some clinical and demographic data of participants may become an obstacle in approaching FMF patients and understanding this complex disease.Publication Sub-pixel counting based diameter measurement algorithm for industrial machine vision(Elsevier Sci Ltd, 2023-12-27) Poyraz, Ahmet Gokhan; Kacmaz, Mehmet; Gurkan, Hakan; Dirik, Ahmet Emir; DİRİK, AHMET EMİR; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü.; 0000-0002-6200-1717; KIK-4851-2024In recent years, there has been a notable surge in the utilization of industrial image processing applications across various sectors, including automotive, medical, and space industries. These applications rely on specialized camera systems and advanced image processing techniques to accurately measure working products with precise tolerances. This research presents a novel fast algorithm for measuring the diameter of a ring, employing a subpixel counting method. The algorithm classifies image pixels into two categories: full pixels and transition pixels. Full pixels reside entirely within the inner region of the workpiece, while transition pixels represent gray pixels that reside at the boundary between the workpiece and its background. To ensure accurate determination of the object area, the proposed method incorporates normalization to account for the contribution of transition pixels alongside full pixels. Subsequently, the circle area equation is employed to calculate the diameter. Moreover, a robust threshold selection method is introduced to effectively distinguish pixels with gray intensities. The experimental setup consists of an industrial camera equipped with telecentric lenses and appropriate illumination. The results demonstrate that the proposed algorithm achieves a 3-10 % improvement in accuracy compared to existing approaches. In terms of measuring sensitivity, the operational sensitivity of the proposed methodology is quantified as 1/20th of the pixel size, exhibiting an average uncertainty of 1 mu m. Furthermore, the proposed method surpasses existing works by at least 12.5 % to 35 % in terms of benchmarking computing time.