Browsing by Author "Mardani, Ali Aghabağlou"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item An investigation into strength and permittivity of compacted sand-clay mixtures by partial replacement of water with lignosulfonate(Polish Acad Sciences Inst Physics, 2016-07) Sezer, Alper; Boz, Aslı; Tanrinian, Nazar; Mardani, Ali Aghabağlou; Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.; 0000-0003-0326-5015; AAJ-6415-2021; 57669486700Strength and permeability of sand-bentonite mixtures are of main concern, particularly in liner design. This study presents the results obtained from an experimental investigation of strength and permittivity of compacted sand-bentonite mixtures in the presence of water-reducing admixture of lignosulfonate. For this, sand-bentonite mixtures containing 4, 8, 12, 16% of bentonite were subjected to standard Proctor tests, to obtain the optimum water content and maximum void ratio of the mixtures. Similar specimens were prepared by partially replacing 0.5, 1 and 2% of water in the mixture with lignosulfonate. Additional specimens containing 16% of bentonite were prepared with 5% deviation towards the wet and dry sides of optimum water content, which was partially replaced with lignosulfonate for evaluation of the effects of deviation from optimum moisture content during densification. It was observed that partial replacement of water with lignosulfonate slightly increases the strength and decreases the permittivity, and that this effect was more pronounced as the replacement level was increased. Additionally, test results reveal that lignosulfonate replacement was more effective on the dry side of optimum water content.Item Performance of steel micro fiber reinforced mortar mixtures containing plain, binary and ternary cementitious systems(College Publishing, 2016) Yüksel, Cihat; Hosseinnezhad, Hojjat; Ramyar, Kambiz; Mardani, Ali Aghabağlou; Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.; 0000-0003-0326-5015; AAJ-6415-2021; 57669486700Steel micro fibers provide strengthening, toughening and durability improvement mechanisms in cementitious composites. However, there is not much data in the literature regarding how the extent of their effectiveness changes depending on the type of matrix being reinforced. For clarifying this point, the influence of a constant volumetric ratio (1%) of 6 mm long steel micro fibers on the performance of 5 mortar mixtures was investigated and were prepared using plain, binary and ternary cementitious systems. A total of 10 mixtures were cast. The mineral admixtures used in the study include silica fume (SF), metakaolin (MK) and a Class C fly ash (FA). While the replacement levels of SF and MK were 10% by weight of the total mass of the binder, this ratio was chosen as 30% for FA. In addition to the behavior of the mixtures under compressive, flexural and impact loads, abrasion, water absorption, chloride ion penetration, freezing-thawing resistance and drying shrinkage characteristics of the mixtures were determined. Test results indicate that generally the refinement in the pore structure of the matrix provided by mineral admixtures and the increase in resistance against growth and coalescence of micro-cracks provided by fibers produce a synergistic effect and improve the investigated performances of the mixtures.