Browsing by Author "ULUSOY, YAHYA"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication An investigation of engine and fuel injection system performance in an agricultural tractor operating with b20 biofuel(Taylor & Francis Inc, 2022-09-14) Düzgüner, Ender; Ulusoy, Yahya; ULUSOY, YAHYA; Alibaş, İlknur; ALİBAŞ, İLKNUR; Bolat, Alper; Alibaş, Kamil; ALİBAŞ, KAMİL; 0000-0003-0170-8038; 0000-0002-1898-8390; 0000-0003-2658-3905In this study, two different 55-kW powered agricultural tractors of the same make and model were operated for 1000 h under similar field conditions, one using diesel fuel (DF) and the other a fuel blend of 20% biodiesel-80% diesel (B20). By the end of 1000 h of operation, the performance values of the B20 fuel were determined to be 3% lower than for the DF. Although the values of CO (40%), HC (40%), and PM (46%) were lower than those of DF, the NOx (7%) was determined to be higher, as expected. Each injector needle and nozzle tip was examined in terms of a functional evaluation via visual inspection, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). According to the analyses, the B20 fuel blend C content was determined to be 73.47% and its O content 23.34%, with the quantity of the other elements lower than 1%. Similarly, for DF, the C content was determined to be 50.49% and that of O 19.95%, with the other elements in trace amounts. Furthermore, Fourier-transform infrared spectroscopy (FTIR) spectral analysis was used to examine the deposits on the injector nozzle tips and needles. Polyisobutylene succinimide (PIBSI) and inorganic components were observed on the injector needles, whereas aging products and inorganic components were seen on the injector nozzle tips. No significant difference was found between the results of the DF and B20 fuels in terms of injector nozzle function.Publication Energy and emission benefits of chicken manure biogas production: A case study(Springer, 2021-03-01) Ulusoy, Yahya; Ulukardeşler, Ayşe Hilal; Arslan, Rıdvan; Tekin, Yücel; ULUSOY, YAHYA; ULUKARDEŞLER, AYŞE HİLAL; ARSLAN, RİDVAN; TEKİN, YÜCEL; Bursa Uludağ Üniversitesi/Teknik Bilimler Meslek Yüksekokulu; 0000-0003-2658-3905; 0000-0002-0111-6879; 0000-0003-3665-7680; 0000-0001-6563-5785; J-3560-2012; V-1754-2018; AAH-9267-2019; AAG-6056-2021Studies on the production of biogas of different organic materials in an anaerobic environment are being carried out all over the world. The most important parameters in these researches can be listed as raw material potential, production processes, economic analyses, and environmental effects. Chicken manure is one of the raw materials used in biogas production. In this study, in addition to the analysis of biogas and energy production potential from chicken manure, greenhouse gas emissions were analyzed to evaluate environmental effects. In Turkey, chicken manure is not adequately processed and causes environmental pollution. The model biogas plant and potential energy generation were researched in this field study. The pilot plant produces 8.58 million m(3) of biogas per year by processing about 110 thousand tons of waste. It produces 17 GWh/year of electricity and 16 GWh/year of thermal energy, as well as reducing CO2 greenhouse gas emissions by 13.86 thousand tons/year.Publication Energy and emission benefits of chicken manure biogas production: A case study(Springer Heidelberg, 2021-03-01) Ulusoy, Yahya; ULUSOY, YAHYA; Ulukardeşler, Ayşe Hilal; ULUKARDEŞLER, AYŞE HİLAL; Arslan, Rıdvan; ARSLAN, RİDVAN; Tekin, Yücel; TEKİN, YÜCEL; Bursa Uludağ Üniversitesi/Teknik Bilimler Meslek Yüksekokulu.; 0000-0003-2658-3905; 0000-0002-0111-6879; AAH-9267-2019; J-3560-2012; V-1754-2018Studies on the production of biogas of different organic materials in an anaerobic environment are being carried out all over the world. The most important parameters in these researches can be listed as raw material potential, production processes, economic analyses, and environmental effects. Chicken manure is one of the raw materials used in biogas production. In this study, in addition to the analysis of biogas and energy production potential from chicken manure, greenhouse gas emissions were analyzed to evaluate environmental effects. In Turkey, chicken manure is not adequately processed and causes environmental pollution. The model biogas plant and potential energy generation were researched in this field study. The pilot plant produces 8.58 million m(3) of biogas per year by processing about 110 thousand tons of waste. It produces 17 GWh/year of electricity and 16 GWh/year of thermal energy, as well as reducing CO2 greenhouse gas emissions by 13.86 thousand tons/year.Publication Response and yield stability of canola (brassica napus l.) genotypes to multi-environments using gge biplot analysis(Univ Centroccidential Lisandro Alvarado, 2021-01-01) Acar, Mustafa; Gizlenci, Sahin; Atagun, Gulhan; Suzer, Sami; Ulusoy, Yahya; ULUSOY, YAHYA; Sincik, Mehmet; SİNCİK, MEHMET; Senyigit, Emre; ŞENYİĞİT, EMRE; Goksoy, Abdurrahim T.; GÖKSOY, ABDURRAHİM TANJU; Bursa Uludağ Üniversitesi/Ziraat Fakültesi/Tarla Bitkileri Anabilim Dalı.; Bursa Uludağ Üniversitesi/Mustafakemal Paşa Yüksekokulu.; 0000-0002-0012-4412; 0000-0001-8641-6995; 0000-0003-2658-3905; AAH-1811-2021The GxE interaction (GEI) provides essential information for selecting and recommending cultivars in multi-environment trials. This study aimed to evaluate genotype (G) and environment (E) main effects and GxE interaction of 15 canola genotypes (10 canola lines and 5 check varieties) over 8 environments and to examine the existence of different mega environments. Canola yield performances were evaluated during 2015/16 and 2016/17 production season in three different locations (Southern Marmara, Thrace side of Marmara, and Black Sea regions) of Turkey. The trial in each location was arranged in a randomized complete block design with four replications. The seed yield data were analyzed using GGE biplot and the yield components data were analyzed using ANOVA. The agronomical traits revealed that environments, genotypes, and GEI were significant at 1 % probability for all of the characters. The variance analysis exhibited that genotypes, environments, and GEI explained 21.6, 21.7, and 25.7 % of the total sum of squares for seed yield, respectively. The GGE biplot analysis showed that the first and second principal components explained 57.3 and 18.3 % of the total variation in the data matrix, respectively. GGE biplot analysis showed that the polygon view of a biplot is an excellent way to visualize the interactions between genotypes and environments.