2021 Cilt 26 Sayı 2
Permanent URI for this collectionhttps://hdl.handle.net/11452/27800
Browse
Browsing by Subject "Ağrı eşiği"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Estimation of pain threshold from EEG signals of subjects in physical therapy using long-short- term memory deep learning model(Bursa Uludağ Üniversitesi, 2021-06-28) Güneç, Kutay; Kasım, Ömer; Tosun, Mustafa; Büyükköroğlu, EminePain is a natural stimulation to protect the whole body. An overreaction to pain can damage the tissues. Therefore, it is important to know the angle at which pain is felt when routinely measuring joint range of motion during the first examination. Detection of pain with the change in characteristics of electroencephalogram signals at the moments when pain occurs is the novelty of this study. The characteristics of the signal with power band changes were obtained by frequency analysis of the electroencephalogram signals. Pain was detected by classifying these characteristics with the Long Short Term Memory deep learning model. Validation of the model was performed with records obtained from 43 volunteer subjects with a 14-channel wireless Emotive brand electroencephalogram device. 96.1% success in binary classification as with pain or without pain and 89.6% success in multi-class classification as with high pain, low pain and without pain was achieved. This success is a quality that can support specialists in diagnosis and treatment by determining the threshold where pain occurs during the first physical therapy examination from the electroencephalogram signals.