Person:
TEZEL, SERKAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

TEZEL

First Name

SERKAN

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Comparison of poisson's ratio measurement methods: The extensometer and the universal tensile testing devices
    (Ege Universitesi, 2021-01-01) Tiritoğlu, Mehmet; Tezel, Serkan; Kavuşturan, Yasemin; TİRİTOĞLU, MEHMET; TEZEL, SERKAN; KAVUŞTURAN, YASEMİN; Bursa Uludağ Üniversitesi/Fen Bilimleri Enstitüsü/Tekstil Mühendisliği Bölümü; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü; 0000-0002-9919-564X; 0000-0002-2316-0782; 0000-0003-4078-8210; C-5123-2013; ABI-8400-2020; A-7462-2018
    Auxetic materials with a negative Poison's ratio (PR) have the potential to meet the demand for different materials, especially technical textiles. Universal Tensile Test (UTT) devices and various experimental setups developed by researchers have been used in PR measurements. This study aims to investigate the PR of knitted fabrics with UTT and extensometer devices comparatively by using the same measurement parameters according to ASTM E132. Knitted fabrics with zigzag and foldable patterns were produced in the study because of their auxetic behaviour. It has been determined that the extensometer device can be used as an alternative to the UTT device for PR measurements. While the PR of foldable fabrics cannot be measured with the UTT device because of the fabrics' folding on themselves, it has been observed that it can be easily measured with the extensometer device thanks to the horizontal axis principle.
  • Publication
    Influence of solvent system on the optoelectrical properties of pcl/carbon black nanofibers
    (Taylor & Francis Inc, 2022-01-04) Peksöz, Ahmet; PEKSÖZ, AHMET; Gebizli, Şebnem Düzyer; DÜZYER GEBİZLİ, ŞEBNEM; Cunayev, Şaban; Tezel, Serkan; TEZEL, SERKAN; Koç, Serpil Koral; KORAL KOÇ, SERPİL; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.; 0000-0003-3737-5896; 0000-0002-0739-8256; AFZ-8325-2022; C-5123-2013; AFO-0698-2022
    In this study, conductive and transparent polycaprolactone (PCL)/carbon black (CB) nanofibers are produced by electrospinning. In order to investigate the effect of solvent system on the optoelectrical properties of PCL/CB nanofibers, the fibers are produced from two different solvent systems; namely, chloroform (CHL) and dimetyl formamid (DMF). For optoelectrical characterization, nanofibers are produced with different deposition times in the range of 1-10 minutes. Surface, optical, electrical and optoelectrical properties of the PCL/CB nanofibers are evaluated. Nanofibers produced from CHL solvent system results in non-uniform nanofibers with higher diameters. They also give a larger diameter distribution. On the other hand, nanofibers with uniform and smaller diameters are obtained from DMF system. UV-spectrophotometer analysis show that nanofiber mats produced from both solvent systems have similar optical transparencies. Lower sheet resistance values are obtained with the nanofiber mats produced from DMF system according to electrical characterizations. Higher Figure of Merit values are calculated for the nanofiber mats produced in DMF solvent system. Considering all the results, it can be concluded that PCL/CB nanofibers produced from DMF solvent system are better candidates compared to the nanofibers produced from CHL solvent system for optoelectrical applications.