Person:
ÖZALP, ABDURRAHMAN ALPER

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ÖZALP

First Name

ABDURRAHMAN ALPER

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Numerical investigation of heat and flow characteristics in a laminar flow past two tandem cylinders
    (Vinca Inst Nuclear Sci, 2021-01-01) Aydın, Neslihan; Özalp, Alper; Karagöz, İrfan; AYDIN, NESLİHAN; ÖZALP, ABDURRAHMAN ALPER; KARAGÖZ, İRFAN; 0000-0002-7442-2746; AAB-9388-2020; AAB-9496-2022
    Heat and flow characteristics were investigated numerically for a laminar stream past two tandem circular cylinders placed in a channel. The blockage ratios (beta = D/H) were chosen to be 0.6, 0.7, and 0.8, respectively, and the gap between the cylinders was varied proportionally to the cylinder diameter as g = 0.2D, 0.7D, 1.5D, and 4D at a low Reynolds number (Re = 40). The effects of the blockage ratio, as well as the gap between two cylinders on heat and flow features were examined in detail. Shear stresses, dimensionless static pressure, heat transfer coefficient, and separation points from the cylinders were determined from the velocity and temperature fields in the flow domain. The results showed that the separation angle decreases with both the blockage ratio and the gap size on the downstream cylinder, whereas heat transfer increases with both the blockage ratio and the gap size on the upstream cylinder.
  • Publication
    A computational and experimental investigation of the metallisation effects on the thermal characteristics of an automotive exterior lighting lamp
    (Inderscience Enterprises, 2016-01-01) Boduroğlu, Sercan; Özalp, Abdulrahman Alper; ÖZALP, ABDURRAHMAN ALPER; Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü; 0000-0002-4976-9027; ABI-6888-2020
    This study was performed to describe the reflector metallisation effects considering the heat transfer characteristics and hot spot formation on an automotive exterior lamp. To form an accurate comparison, three reflectors were studied with emissivities of epsilon(1) = 0.04, epsilon(2) = 0.42 and epsilon(3) = 0.95, which indicated the aluminium-coated, uncoated white and uncoated black reflectors, respectively. The discussion section is organised to address the numerical evaluations using computational fluid dynamics (CFD) and the experimental evaluations. The computational results indicated that, despite the variations in h(conv) and h(rad) with epsilon, the total heat transfer coefficients on the bulb's surface result in a constant value. Additionally, it is observed that the hot spot location on the lens moves to the centre area for a lower reflector emissivity (epsilon(3)->epsilon(1)) as the radiation approaching the lens becomes more effective on the lens's temperature distribution. The numerical and experimental results are compared, and a good agreement is found between them.