Person: TÜRKER, HAKAN TACATTİN
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
TÜRKER
First Name
HAKAN TACATTİN
Name
5 results
Search Results
Now showing 1 - 5 of 5
Publication Experimental setup for beams with adjustable rotational stiffness: An educational perspective(Wiley, 2021-11-17) Türker, Hakan Tacattin; Sağıroğlu, Serkan; Deliktaş, Babür; TÜRKER, HAKAN TACATTİN; SAĞIROĞLU, SERKAN; DELİKTAŞ, BABÜR; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü,; 0000-0001-5820-0257; 0000-0002-4035-4642; A-4984-2018; AAH-8687-2021; AAH-8862-2021In structural analysis, the rotations of beams' supports are considered either completely fixed or completely free. Therefore, supports are idealized as fixed, pinned (hinged), or roller. In real structures, regarding rotation, the support behavior is neither fully rigid nor completely free and shows a semi-rigid behavior in most cases. In this study, an educational test setup was created for a beam with semi-rigid supports to examine the effect of semi-rigid support on structural behavior. In this experimental setup, support conditions with different rotational stiffness can be obtained from pinned support to fixed support, which can be easily changed between the pinned and the fixed support. The physical equivalent of the rotational stiffness concept is shown in an easy and understandable way with the theoretical equations. A simulation tool based on the derived analytical equation is also developed using Mathematica Software. The simulation tool provides the users with a way to visualize the deformation of the system. The results of beam tests with different support conditions were compared with the results of the simulation, and the effects of semi-rigid support on the beam behavior were shown. The results revealed that the semi-rigid supported beam assembly created can also be used to examine the behavior of frame beams under vertical load. These simple novel experimental setup and simulation tools provided are convenient and useful approaches to demonstrate the structural concepts, including the semi-rigid support and behavior of beams in a frame structure.Publication Stochastic approach on safe designing of double layer grid space structure against member length imperfections(Korean Soc Steel Construction-KSSC, 2021-01-29) Türker, Hakan T.; TÜRKER, HAKAN TACATTİN; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.; 0000-0001-5820-0257; A-4984-2018The imperfections in Double Layer Grid Space Structure (DLGSS) threaten the safety of designs. The imperfections in the member length of DLGSS may result from human-based causes such as manual cuts, tolerance sensitivity in CNC cuttings and variation in temperature. Therefore, analyzing the impacts of imperfections is vital to ensure the safety of DLGSS systems. Thus, a safe design of DLGSS against member length imperfections is the main focus of this paper. A novel and practical safe design approach, which considers member length imperfections, has been proposed based on linear elastic and probabilistic analyses methods. The impacts of member length imperfections on the DLGSS behavior were also evaluated in detail. Variation in positions of imperfect members, initial size of length imperfections (longer or shorter than the ideal size) and number of imperfect members were selected as the parameters to be analyzed. A 3D computer program, which considers the initial length imperfections of members, has been codded to analyze the space trusses. The impact of imperfection on a space structure was investigated by repeating the simulations for stochastic dispersion of imperfect member position and initial member length imperfection. The results revealed that initial length imperfection might have a considerable impact on the DLGSS behavior. The DLGSS systems can safely be designed by employing the proposed design approach to overcome the defined imperfections.Publication An efficient approach for free vibration behaviour of non-uniform and non-homogeneous helices(Springer, 2023-03-02) Türker, Hakan Tacattin; Cuma, Yavuz Çetin; Çalım, Faruk Fırat; TÜRKER, HAKAN TACATTİN; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü; A-4984-2018The paper presents an efficient numerical method for free vibration analysis of non-uniform and non-homogeneous cylindrical helices. Power law distribution is used for the variation of the material properties along the axial direction of rods. The derivation of the governing equations are carried out by the Timoshenko's beam theory. Obtained ordinary differential equations of the problems are solved using the complementary functions and stiffness matrix methods. Numerical examples are given to highlight the effects of varying geometric and material properties on free vibration. Proposed method requires a small number of elements in order to yield agreeable results. The computed results are compared with those reported in the literature and obtained from the finite element ANSYS software.Publication Accurate estimation of inter-story drift ratio in multistory framed buildings using a novel continuous beam model(Mdpi, 2023-07-01) Çolak, Hacer; Türker, Hakan T.; Coşkun, Hilmi; TÜRKER, HAKAN TACATTİN; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.; 0000-0001-5820-0257; A-4984-2018This study presents a novel method for accurately predicting the dynamic behavior of multistory frame buildings under earthquake ground motion. The proposed method allows approximately estimating the inter-story drift ratio, a crucial parameter strongly associated with building damage, its distribution along the building height, and its maximum value location. An equivalent continuous beam model with a rotation at the base, consisting of a combination of a shear beam and a flexural beam, is proposed to achieve this. This model derives closed-form solutions for the building's dynamic characteristics. The lateral deformations along the height of frame buildings subjected to a given earthquake load, particularly the inter-story drift ratio profiles, and the maximum inter-story drift ratio parameter, are investigated. The proposed continuous model requires two dimensionless parameters: the lateral stiffness ratio (& alpha;) and the rotation at the base (& theta;), representing the drift ratio of the first story. For the expression of the lateral stiffness ratio (& alpha;) coefficient, a simple equation is also proposed using the beam-to-column stiffness ratio (& rho;, or Blume coefficient) associated with the framed (discrete) system. Various building models are employed to validate the proposed method, demonstrating its applicability to both high-rise and low-rise building configurations. With the results obtained, it is shown that the proposed continuous model can be used not only for high-rise or multistory building models but also for low-rise building models.Publication Effect of size on biaxial flexural strength for cement-based materials by using a triangular plate method(Higher Education Press, 2022-11-03) Türker, Hakan T.; TÜRKER, HAKAN TACATTİN; A-4984-2018The effect of size on the biaxial flexural strength (BFS) of Portland cement mortar was investigated by using the recently proposed triangular plate method (TPM). An experimental program was conceived to study the size effect by keeping a constant water-cement ratio of 0.485, cement-sand ratio of 1:2.75, and using unreinforced triangular mortar plates of five different thicknesses and seven different side lengths. The BFS of the produced specimens was tested, and variations of BFS depending on specimen thickness and side length were determined. The results indicated that increases in triangular plate specimen side length and specimen thickness led to a decrease in the BFS of Portland cement mortar. The effect of specimen length increase on BFS was more significant than on the effect of the specimen thickness. The variations in specimens' thickness indicated a deterministic Type I size effect, while the variations in specimens' length showed an energetic-statistical Type I size effect.