Person:
ÖZER, HAKKI

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ÖZER

First Name

HAKKI

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Development of MNO2/PANI/SWCNT nanocomposite supercapacitor electrode and investigation of electrochemical performance
    (Bursa Uludağ Üniversitesi, 2023-09-25) Özada, Çağatay; Ünal, Merve; ÖZER, HAKKI; YAZICI, MURAT
    In this study, a manganese dioxide (MnO₂/polyaniline (PANI)/ single-walled carbon nanotube (SWCNT) nanocomposite electrode was prepared for pseudo-supercapacitors. To reduce the internal resistance of the electrode, increase the capacitance stability, and reduce the cost of single-walled carbon nanotubes, SWCNT was subjected to two-step acid etching. The purity of SWCNT was improved from ~95% to 99.98%. In addition, SWCNT was functionalized by this process. Thus, a nanocomposite was formed by coating PANI around SWCNT. MnO₂/PANI/SWCNT were synthesized using the hydrothermal method. Morphological, chemical and thermal analyses of the synthesized nanocomposite structure were carried out. In addition, X-ray diffraction (XRD) was used to determine the crystal structure. Electrochemical analyses were performed using a three-electrode system in a 1 M KOH electrolyte solution. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurements were performed. The capacitance of the nanocomposite electrode at 400 cycles was314 mF/cm², and the capacitance retention stability was calculated at 73.24%. The results showed that the capacitance stability was high, and the supercapacitor was sensitive to redox reactions.
  • Publication
    A sandwich panel that autonomously repairs sudden large holes and defects for tankers and pipelines carrying hazardous matter
    (Sage Publications Ltd, 2022-04-12) Özer, Hakkı; Kuzu, Eslem; Özada, Çağatay; Ünal, Merve; Kasım, Hasan; Yazıcı, Murat; ÖZER, HAKKI; Kuzu, Eslem; Özada, Çağatay; Ünal, Merve; YAZICI, MURAT; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü.; 0000-0003-1503-1232; 0000-0002-8720-7594; AAC-5342-2021; M-4741-2017; AAG-9987-2021; FOL-7608-2022; FFS-9528-2022; AAG-9987-2021
    The self-healing of micro and macro cracks is vital for eliminating defects such as damage progression and loss of strength in structures. In this study, a polyurethane (PU) based geometrically self-healing sandwich structure was developed. The geometric healing agent, PU resin and activator, were filled into macrocapsules, and these capsules were filled into the Aluminum (Al) honeycomb cells. Self-healing of structural strength, large holes and cracks in developed sandwich structures were investigated by performing quasi-static compression and impact penetration tests. The sandwich structure with a self-healing capsules-filled core was damaged by subjecting it to quasi-static and penetration impact loads, and the healing agents in the broken capsules were mixed. The damage in the specimen was removed by geometric self-healing. Liquid and air permeability tests were applied to the PU foam used as a healing agent. No liquid permeability was observed in the structure. In addition, significant reductions in air permeability were obtained. Scanning electron microscope images were used to explore the characterization of the PU foam structure cells.