Person:
ALBAK, EMRE İSA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ALBAK

First Name

EMRE İSA

Name

Search Results

Now showing 1 - 5 of 5
  • Publication
    Simplified optimization model and analysis of twist beam rear suspension system
    (Sage Publications, 2021-04-01) Albak, Emre İsa; Solmaz, Erol; Öztürk, Ferruh; ALBAK, EMRE İSA; SOLMAZ, EROL; ÖZTÜRK, FERRUH; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü; 0000-0001-9215-0775; 0000-0001-9369-3552; I-9483-2017; HRA-1531-2023; FRD-1816-2022
    Twist beam rear suspension systems are frequently used in front wheel drive cars owing to their compactness, lightweight and cost-efficiency. Since the kinematic behavior of twist beam rear suspension systems are determined by the elastic properties of the twist beam, the twist beam is the most critical component of this suspension system. In the study, a simplified optimization model is presented to offer designers the most suitable beam structure in the early stage of the vehicle system development. With the optimization model, designers will be able to obtain the most suitable twist beam structure in a very short time. Opposite wheel travel analysis based on finite element modeling of twist beam is conducted to examine the kinematic performance of the twist beam rear suspension. The cross-section, position and direction of the twist beam are the most important parameters affecting the performance of the twist beam rear suspension system. In this study, optimization studies with 25 design variables including variable cross-sections, twist beam position and twist beam orientation are performed. Nine different optimization studies are carried out to investigate the effects of design variables better. In optimization studies carried out with the genetic algorithm, the objective and constraint functions are obtained with the moving least squares meta-modeling method. In the study, toe angle, camber angle and roll steer are decided as constraints, and mass as the objective function. With the optimization models, lightweight designs up to 25% have been obtained according to the initial design. It is validated that the proposed simplified model and analysis of twist beam rear suspension with connecting bushing is a quite efficient approach in terms of accuracy and to speed up the optimum design process.
  • Publication
    Crashworthiness design and optimization of nested structures with a circumferentially corrugated circular outer wall and inner ribs
    (Elsevier, 2021-08-03) Albak, Emre İsa; ALBAK, EMRE İSA; Bursa Uludağ Üniversitesi/Gemlik Asım Kocabıyık Meslek Yüksekokulu/Hibrit ve Elektrikli Araç Teknolojisi; 0000-0001-9215-0775; I-9483-2017
    Twenty-six nested structures with a circumferentially corrugated circular outer wall and inner ribs are investigated under quasi-static axial compression using the finite element method. The finite element model is validated by literature. Also, theoretical predictions for the nested structures are derived and compared with finite element analyses. Among the structures whose crashworthiness performances are examined, CO1D and CSIN2D are selected as the best ones. The comparisons have shown that the ribs attached to the closest points of the corrugated outer wall provide stable collapse modes and better crash performance. Also, the crashworthiness performance of the nested structures with octagon inner structures is higher than other alternative structures because the number of corner members and the cross-section lengths are more efficient. Finally, the objective functions developed by the surrogate modeling method are optimized by non-dominated sorting genetic algorithm II (NSGA-II), multi-objective particle swarm optimization (MOPSO), paired offspring generation for constrained large-scale multiobjective optimization (POCEA) and an evolutionary algorithm for large-scale many-objective optimization (LMEA). Optimum CO1D and CSIN2D designs obtained by the NSGAII method have 37.00% and 26.68% higher SEA values, respectively than 'Cribs' structure at the same PCF value.
  • Publication
    A new approach for battery thermal management system design based on grey relational analysis and latin hypercube sampling
    (Elsevier, 2021-09-16) Bulut, Emre; Albak, Emre İsa; Sevilgen, Gökhan; Öztürk, Ferruh; BULUT, EMRE; ALBAK, EMRE İSA; SEVİLGEN, GÖKHAN; ÖZTÜRK, FERRUH; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü; Bursa Uludağ Üniversitesi/Gemlik Asım Kocabıyık Meslek Yüksekokulu/Hibrit ve Elektrikli Araç Teknolojisi; 0000-0001-9159-5000; 0000-0001-9215-0775; 0000-0002-7746-2014; ABG-3444-2020; AAG-8907-2021; I-9483-2017; JCO-2416-2023; FRD-1816-2022
    A liquid cooling system is an effective type of battery cooling system on which many studies are presented nowadays. In this research, the effects of the mass flow rate and number of channels on the maximum temperature and pressure drop are investigated for multi-channel serpentine cooling plates. A new approach with LHS and GRA is used to obtain the optimum ranges of design parameters to minimize the pressure drop, maximum temperature and to maximize the convective heat transfer coefficient. In this study, the values of the parameters for the numerical modeling are obtained by the experiments. The width and height of the serpentine channel and mass flow rate are chosen as input parameters and the pressure drop, convective heat transfer coefficient and maximum temperature are selected as output parameters. Comparing with the base design, the optimized design provided up to 40.3% decrease in the pressure drop with a penalty of 11.3% decrease in the convective heat transfer coefficient with a slight decrease in the maximum temperature. The proposed approach can be used to design better cooling plates to keep the batteries in safe temperature ranges and to reduce the power consumption by optimizing the pressure drop and maximum temperature values.
  • Publication
    Optimization design for circular multi-cell thin-walled tubes with discrete and continuous design variables
    (Taylor & Francis Inc, 2022-08-09) Albak, Emre İsa; ALBAK, EMRE İSA; Bursa Uludağ Üniversitesi/Gemlik Asım Kocabıyık Meslek Yüksekokulu.; 0000-0001-9215-0775; I-9483-2017
    Wall thickness and the number of cells are important elements affecting crashworthiness. While wall thickness is expressed as the continuous design variable, the number of ribs and the number of inner structures are defined as the discrete design variable. Specific energy absorption is determined as the objective, peak crushing force is selected as the constraint. Surrogate models of these functions are obtained with artificial neural networks. A loop has been developed for the selection of the ideal parameters. The study revealed that the use of discrete and continuous design variables together improves crashworthiness.
  • Publication
    Correlation between objective and subjective tests for vehicle ride comfort evaluations
    (Sage Publications Ltd, 2022-02-23) Boke, Tevfik Ali; Bozkurt, Rasim; Ergül, Murat; Özturk, Dogan; Emiroğlu, Sinan; KAYA, NECMETTİN; Albak, Emre Isa; Öztürk, Ferruh; ALBAK, EMRE İSA; ÖZTÜRK, FERRUH; Bursa Uludağ Üniversitesi/Gemlik Asım Kocabıyık Meslek Yüksekokulu.; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.; 0000-0001-9215-0775; 0000-0002-8297-0777; I-9483-2017
    One of the most important criteria that vehicle customers take into consideration when buying vehicles is ride comfort. Ride comfort is determined in two different ways, called objective and subjective methods. This research presents an approach for subjective and objective evaluations of vehicle ride comfort through road tests. In this study, first, reliable driver evaluation for subjective tests is made and tests are performed with these reliable drivers. Correlation between objective and subjective test results is achieved for different vehicle types and road groups and software is developed to evaluate subjective ride comfort by using objective test data acquired from the vehicle. This software is intended to be used instead of subjective tests in future vehicle development studies.