Person: MANASOĞLU, GİZEM
Loading...
Email Address
Birth Date
6 results
Search Results
Now showing 1 - 6 of 6
Publication The effect of graphene coating on surface roughness and friction properties of polyester fabrics(Kaunas Univ Tech, 2021-01-01) Manasoglu, Gizem; Celen, Rumeysa; Akgün, Mine; Kanik, Mehmet; Manasoglu, Gizem; MANASOĞLU, GİZEM; Celen, Rumeysa; ÇELEN, RUMEYSA; Akgün, Mine; AKGÜN, MİNE; Kanik, Mehmet; KANIK, MEHMET; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.; 0000-0002-1504-8694; 0000-0002-2972-8295; JTS-3559-2023; JHT-0825-2023In this article, the surface roughness and friction coefficient values of graphene coated fabrics were examined. Fabrics were coated with three different graphene concentrations (5 %, 10 % and 20 %) with the knife-over-roll principle. The surface roughness of samples was measured by Accretech Surfcom 130A. Various surface roughness parameters of the coated fabrics were evaluated. Static and kinetic friction coefficients of coated fabrics were measured by Labthink Param MXD-02 friction tester using the standard wool abrasive cloth. It was observed that the coating concentration affected the frictional and roughness properties of fabrics. Experimental results showed that fabric surface roughness and friction coefficient values decreased significantly, especially at 20 % concentration. It was concluded that the coated fabrics produced could be used in applications such as anti-wear clothing.Publication An investigation on the thermal and solar properties of graphene-coated polyester fabrics(MDPİ, 2021-02-01) Manasoglu, Gizem; MANASOĞLU, GİZEM; Celen, Rumeysa; ÇELEN, RUMEYSA; Kanik, Mehmet; KANIK, MEHMET; Ulcay, Yusuf; ULCAY, YUSUF; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.; 0000-0002-1504-8694; 0000-0002-2972-8295; JTS-3559-2023; AAI-8441-2021; AAI-8087-2021; IZE-4329-2023In this study, coatings were made with graphene nanopowder in two different thicknesses (0.1 and 0.5 mm) at three different concentrations (50, 100 and 150 g/kg) on polyester woven fabrics. The effects of the coating thickness and graphene concentration were examined with optical and scanning electron microscopy (SEM) images. The thermal stability properties of the samples were also evaluated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Thermal conductivity was evaluated with two different principles: contact and radiant heat transfer, according to JIS R 2618 and EN ISO 6942, respectively. Solar measurements were performed with a Shimadzu UV-3600 Plus spectrophotometer. The graphene coating improved the thermal stability of the polyester fabrics. The solar absorbance value increased by 80% compared to reference fabrics, and reached approximately 90%. One of the important results was that the thermal conductivity coefficient increased by 87% and 262% for the two coating thicknesses, respectively.Publication Investigation of thermal and solar properties of perlite coated woven fabrics(Wiley, 2021-08-21) Manasoğlu, Gizem; Kanık, Mehmet; MANASOĞLU, GİZEM; KANIK, MEHMET; Bursa Uludağ Üniversitesi/Tekstil Mühendisliği Bölümü; 0000-0002-1504-8694; 0000-0003-2317-7282; JTS-3559-2023; KGU-5587-2024In this study, thermal insulation and solar properties of polyester woven fabrics which were coated with micronized perlite having three different particle sizes (10-38, 50-63, and 100-150 mu m) at four different concentrations (20, 40, 60, and 80 g/kg) were investigated. The coating process was performed according to the knife-over-roll method. Thermal measurements were carried out with two different principles to evaluate contact and radiant heat transfer according to JIS R 2618 (testing method for thermal conductivity of insulating fire bricks by hot wire) and EN ISO 6942 (protective clothing-protection against heat and fire-method of test: evaluation of materials and material assemblies when exposed to a source of radiant heat), respectively. Perlite coating enhanced the thermal insulation property of fabrics. The lowest thermal conductivity coefficient and heat transmission factor (0.088 W/mK and 26.83%) values were obtained at the maximum concentration with the biggest size perlite. With the increasing perlite concentration, solar transmittance values decreased for all particle sizes while solar reflectance values increased.Publication Usage of barium titanate in fabric coating and investigation of some properties(Korean Fiber Soc, 2021-03-03) Celen, Rumeysa; Manasoğlu, Gizem; Ulcay, Yusuf; Kanık, Mehmet; ÇELEN, RUMEYSA; MANASOĞLU, GİZEM; ULCAY, YUSUF; KANIK, MEHMET; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü; 0000-0002-2972-8295; 0000-0002-1504-8694; JTS-3559-2023; HRC-4302-2023; KGU-5587-2024; GHA-2068-2022In this study, nano-sized barium titanate powder was applied for the first time to polyester woven fabrics by knife coating at three different concentration rates. Some physical (thickness, mass per unit area, bending rigidity, air permeability and tear strength) properties, electromagnetic shielding efficiency and solar (transmittance, reflectance) properties of samples were presented. The samples were also characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Electromagnetic shielding effectiveness of the fabrics was determined according to the ASTM D4935-10 standard by using a coaxial transmission line measurement technique in the frequency range of 15-3000 MHz. The solar properties were measured according to EN14500 standard using a UV/VIS/NIR spectrophotometer and results were calculated according to EN 410 standard. Results revealed that the electromagnetic shielding effectiveness and solar reflectance property of samples improved with increasing barium titanate concentration.Publication Effect of fixation conditions on yellowing behavior of cellulose powder-coated fabrics(Sage Publications Ltd, 2019-02-26) Yıldırım, Kenan; Manaşoğlu, Gizem; MANASOĞLU, GİZEM; Kanık, Mehmet; KANIK, MEHMET; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği.; 0000-0002-1504-8694; IZE-4329-2023; AAI-8441-2021; JTS-3559-2023In this study, the yellowing behavior of cellulose powders, which is applied to pretreated polyester woven fabrics with concentrations of 100g/kg by knife coating technique, was investigated. After drying process, coated fabrics were cured at different conditions to determine the effects of the curing temperature and time on yellowing behaviors. The yellowness-whiteness of coated fabrics was measured with a spectrophotometer according to ASTM E313. As the curing temperature and time increase, yellowing effect was more observable. However, the effect of temperature increase is found to be more significant than the increase in curing duration in terms of more observed yellowness. In order to investigate the reason of yellowing, cellulose powder samples were heated in drying oven at three different heating temperatures (130 degrees C, 150 degrees C, and 170 degrees C) for three different heating periods (3, 5, and 7 min). Then, thermal gravimetric analysis and Fourier transform infrared spectroscopy analysis of powder samples were performed for each temperature-period combinations. No ring-opening reaction on the cellulose group was found in the Fourier transform infrared spectroscopy analysis. However, the changes in the spectra can be attributed to the chain breakage in the cellulose macromolecules as well as water loss from the molecular structure during the heating process. Microscopic and scanning electron microscopic analysis was carried out to see any surface change on the fiber and coated fabric. There was no detectable surface change on the fiber and coated fabric surface, apart from a color change on the fabric surface.Publication Development of fully biodegradable fusible interlinings for eco-friendly garments and investigation of their performance on a shirt(Wiley, 2023-03-22) Seyidzade, Lale; Kanık, Mehmet; KANIK, MEHMET; Gurarda, Ayca; MANASOĞLU, GİZEM; GÜRARDA, AYÇA; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.; 0000-0002-1504-8694; JTS-3559-2023Interlining is a very important accessory in the garment industry and is used between two layers of fabric in the garment to support the appearance and stance of the garment. In fusible interlinings, petroleum-based synthetic materials such as polyamide, polyester, high-density polyethylene (HDPE), low-density polyethylene (LDPE), and various copolymers are used as the bonding material. Since these polymers do not degrade over time in nature, they do not support environmentally friendly production. This study aimed to produce fully biodegradable (100%) fusible interlinings by using environmentally friendly biodegradable polymers instead of traditional ones and thus develop eco-friendly garment with their help. Firstly, fusible interlinings were produced by coating three different polymers, one conventional (HDPE) and the other two biodegradable (PLA and PCL) on the cotton base fabric by knife coating technique. In the second stage, these fusible interlinings were applied to a 100% cotton shirting fabric, and their performance and biodegradability tests were performed. According to the results, it was revealed that these interlinings could be used in the production of completely biodegradable clothes.