Person:
ENSARİOĞLU, CİHAT

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ENSARİOĞLU

First Name

CİHAT

Name

Search Results

Now showing 1 - 3 of 3
  • Publication
    Improving the load distribution in the automobile front collision zone by adding 's' shaped curved collision rail
    (Pamukkale Univ, 2023-01-01) Bilbay, Fahri Berk; REİS, MURAT; Bilbay, Fahri Berk; Reis, Murat; Gülçimen Çakan, Betül; Ensarıoğlu, Cihat; ENSARİOĞLU, CİHAT; Çakır, Mustafa Cemal; ÇAKIR, MUSTAFA CEMAL; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/ Makine Mühendisliği Bölümü.; F-9772-2018
    In this study, the performance of the front collision zone of the vehicle, reinforced with an S-shaped front collision rail, was compared to that of the classic straight front collision rail. In order to create a safe living cage in automobiles, half vehicle model was used and the collision performances of two different front collision zone models were compared. Torsion, bending and frontal impact scenarios were created with Hyperworks-Optistruct software to obtain versatile and continuous load paths in the vehicle. Vehicle front collision zone elements were designed with Siemens NX software based on the resulting load paths. Altair Hypermesh software was used to create the material properties, connection/contact zones and element mesh structures of the front collision zone components, and thus the preprocessing step was completed. Two different collision zone models were used to compare the collision zone with the classic arm and the one reinforced with the "S" shaped collision arm. The amount of energy absorbed by the collision zone components, the total displacement in the collision zone, the loads transmitted to the passenger cabin and the efficiency of the collision force (CFE) were obtained from each simulation.
  • Publication
    Experimental and numerical investigation of in-plane and out-of-plane impact behaviour of auxetic honeycomb boxes produced by material extrusion
    (Gazi Üniversitesi, 2021-02-21) Çakan, Betül Gülçimen; Ensarioğlu, Cihat; Küçükakarsu, Volkan M.; Tekin, İbrahim E.; Çakır, M. Cemal; GÜLÇİMEN ÇAKAN, BETÜL; ENSARİOĞLU, CİHAT; Küçükakarsu, Volkan M.; Tekin, İbrahim E.; ÇAKIR, MUSTAFA CEMAL; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.; 0000-0003-4118-8639; 0000-0003-1739-1143; F-9772-2018; AFD-6959-2022; DAO-6186-2022; HQW-4065-2023; JIT-5147-2023
    Auxetic structures, which have a negative Poisson's ratio, have good mechanical energy/impact absorption properties. These structures have found application in sandwich composites in the aerospace and defence industries, in the production of armour or protective sports equipment. In this study, the mechanical behaviour of the auxetic honeycomb structure in different directions (in-plane and out-of-plane) under impact loading was investigated. For the in-plane (x and y) and out-of-plane (z) directions, boxes with an auxetic honeycomb structure were produced by material extrusion method using Power ABS filament. In the experimental study, dynamic tests were carried out with a drop test machine. Besides, explicit analyses were performed by creating finite element models for these 3 directions. The experimental and numerical results have shown that the energy absorption property of auxetic honeycomb geometry is superior in the case of out-of-plane loading, in agreement with each other. In in-plane loadings, crush force efficiency (CFE) and crush forces were lower.
  • Publication
    Effect of polyurea coating on the ductility of aluminum foam
    (Elsevier, 2022-03-03) Bijanzad, Armin; Abdulwahab, Mohamad; Lazoğlu, İsmail; Ensarioğlu, Cihat; ENSARİOĞLU, CİHAT; Çakır, Mustafa Cemal; ÇAKIR, MUSTAFA CEMAL; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makina Mühendisliği Bölümü.; 0000-0002-8316-9623; F-9772-2018; HOR-0562-2023
    The closed-cell metal foams are utilized in various industrial applications due to their impact and energy absorption capacity, noise cancelation, and lightweight properties. Additionally, the manufacturing methods of stochastic foams with blowing agents or inert gas injection are well known. However, the poor mechanical strength and high brittleness are restricting the application of these materials. A method of increasing the ductility, plastic deformation, and fracture toughness of these materials is the integration of elastomer coating. Polyurea is widely used in applications where water-proofing and high ductility are aimed. In this study, two types of polyurea coatings as MS950 and MS955 are sprayed over the aluminum foam with three densities as 0.508, 0.557, and 0.624 g/cm(3) to evaluate the effect of coating on the ductility and fracture toughness of samples considering the tensile behavior and 4 densities as 0.508, 0.538, 0.557, and 0.624 g/cm(3) for the flexural bending test. The MS955 polyurea coating elevated the ultimate tensile strength and elasticity modulus of all specimens with a maximum of 239% and a minimum of 70%. However, the MS950 coating did not result in a significant rise in tensile strength. The main advantage of the MS950 coating is in the amount of strain increment with 374% in maximum and 181% in minimum resulting in higher ductility and fracture toughness. Additionally, the bending characteristics of MS950 coating demonstrate a drastic increase in both load and strain which recommend the usage of this coating in bending and impact applications. Finally, an analytical evaluation of the coated and uncoated specimens in the elastic region and the elastoplastic region is provided using linear and power-law interpolation. In tensile tests, the MS955 coating resulted in higher elasticity modulus and fracture toughness. However, in bending applications, the MS950 coating demonstrated higher load strength with elevated ductility.