Publication:
Prediction of chenille yarn and fabric abrasion resistance using radial basis function neural network models

dc.contributor.authorTokat, Sezai
dc.contributor.buuauthorÇeven, Erhan Kenan
dc.contributor.buuauthorÖzdemir, Özcan
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü
dc.contributor.orcid0000-0003-3283-4117
dc.contributor.orcid0000-0003-2494-6485
dc.contributor.researcheridAAG-4653-2019
dc.contributor.researcheridB-1488-2019
dc.contributor.scopusid6504089018
dc.contributor.scopusid8577587200
dc.date.accessioned2024-05-22T12:40:58Z
dc.date.available2024-05-22T12:40:58Z
dc.date.issued2007-02
dc.description.abstractThe abrasion resistance of chenille yarn is crucially important in particular because the effect sought is always that of the velvety feel of the pile. Thus, various methods have been developed to predict chenille yarn and fabric abrasion properties. Statistical models yielded reasonably good abrasion resistance predictions. However, there is a lack of study that encompasses the scope for predicting the chenille yarn abrasion resistance with artificial neural network (ANN) models. This paper presents an intelligent modeling methodology based on ANNs for predicting the abrasion resistance of chenille yarns and fabrics. Constituent chenille yarn parameters like yarn count, pile length, twist level and pile yarn material type are used as inputs to the model. The intelligent method is based on a special kind of ANN, which uses radial basis functions as activation functions. The predictive power of the ANN model is compared with different statistical models. It is shown that the intelligent model improves prediction performance with respect to statistical models.
dc.identifier.doihttps://doi.org/10.1007/s00521-006-0048-8
dc.identifier.endpage145
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue2
dc.identifier.scopus2-s2.0-33847294760
dc.identifier.startpage139
dc.identifier.urihttps://link.springer.com/article/10.1007/s00521-006-0048-8
dc.identifier.urihttps://hdl.handle.net/11452/41517
dc.identifier.volume16
dc.identifier.wos000244199900004
dc.indexed.scopusScopus
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.collaborationYurt içi
dc.relation.journalNeural Computing and Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAbrasion resistance
dc.subjectRadial basis functions
dc.subjectArtificial neural networks
dc.subjectChenille yarn
dc.subjectPrediction
dc.subjectComputer science
dc.subject.scopusYarns; Cotton Fibers; Weft
dc.subject.wosComputer science, artificial intelligence
dc.titlePrediction of chenille yarn and fabric abrasion resistance using radial basis function neural network models
dc.typeArticle
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: