A comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problems

dc.contributor.authorPanagant, Natee
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorBureerat, Sujin
dc.contributor.authorMirjalili, Seyedali
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Makina Mühendisliği.tr_TR
dc.contributor.orcid0000-0003-1790-6987tr_TR
dc.contributor.researcheridF-7426-2011tr_TR
dc.contributor.scopusid7102365439tr_TR
dc.date.accessioned2024-01-24T06:02:13Z
dc.date.available2024-01-24T06:02:13Z
dc.date.issued2021-08
dc.description.abstractMulti-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This paper investigates the comparative performance of fourteen new and established multi-objective metaheuristics when solving truss optimisation problems. The optimisers include multi-objective ant lion optimiser, multi-objective dragonfly algorithm, multi-objective grasshopper optimisation algorithm, multi-objective grey wolf optimiser, multi-objective multi-verse optimisation, multi-objective water cycle algorithm, multi-objective Salp swarm algorithm, success history-based adaptive multi-objective differential evolution, success history-based adaptive multi-objective differential evolution with whale optimisation, non-dominated sorting genetic algorithm II, hybridisation of real-code population-based incremental learning and differential evolution, differential evolution for multi-objective optimisation, multi-objective evolutionary algorithm based on decomposition, and unrestricted population size evolutionary multi-objective optimisation algorithm. The design problem is assigned to minimise structural mass and compliance subject to stress constraints. Eight classical trusses found in the literature are used for setting up the design test problems. Various optimisers are then implemented to tackle the problems. A comprehensive comparative study is given to critically analyse the performance of all algorithms in this problem area. The results provide new insights to the pros and cons of evolutionary multi-objective optimisation algorithms when addressing multiple, often conflicting objective in truss optimisation. The results and findings of this work assist with not only solving truss optimisation problem better but also designing customised algorithms for such problems.en_US
dc.description.sponsorshipThailand Research Fund (TRF) (RTA6180010)en_US
dc.identifier.citationYıldız, A. R. vd. (2021). "A comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problems". Archives of Computational Methods in Engineering, 28(5), 4031-4047.en_US
dc.identifier.doihttps://doi.org/10.1007/s11831-021-09531-8
dc.identifier.endpage4047tr_TR
dc.identifier.issn1134-3060
dc.identifier.issn1886-1784
dc.identifier.issue5tr_TR
dc.identifier.scopus2-s2.0-85100149962tr_TR
dc.identifier.startpage4031tr_TR
dc.identifier.urihttps://link.springer.com/article/10.1007/s11831-021-09531-8
dc.identifier.urihttps://hdl.handle.net/11452/39285
dc.identifier.volume28tr_TR
dc.identifier.wos000608094700001
dc.indexed.pubmed
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.collaborationYurt dışı
dc.relation.journalArchives of Computational Methods in Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTopology optimizationen_US
dc.subjectSize optimizationen_US
dc.subjectSizing optimizationen_US
dc.subjectGenetic algorithmen_US
dc.subjectShapeen_US
dc.subjectDesignen_US
dc.subjectApproxımateen_US
dc.subjectSearchen_US
dc.subjectConstrained optimizationen_US
dc.subjectGenetic algorithmsen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectPopulation statisticsen_US
dc.subjectTrussesen_US
dc.subjectComparative performanceen_US
dc.subjectConflicting objectivesen_US
dc.subjectEvolutionary multi-objectivesen_US
dc.subjectMulti objective evolutionary algorithmsen_US
dc.subjectMulti-objective differential evolutionsen_US
dc.subjectMulti-objective metaheuristicsen_US
dc.subjectNon-dominated sorting genetic algorithm - iien_US
dc.subjectPopulation based incremental learningen_US
dc.subjectMultiobjective optimizationen_US
dc.subject.scopusSteel; Trusses; Optimum Designen_US
dc.subject.wosComputer Science, Interdisciplinary Applicationsen_US
dc.subject.wosEngineering, Multidisciplinaryen_US
dc.subject.wosMathematics, Interdisciplinary Applicationsen_US
dc.titleA comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problemsen_US
dc.typeArticleen_US
dc.typeReviewen_US
dc.wos.quartileQ1en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: