Detection of dead entomopathogenic nematodes in microscope images using computer vision

dc.contributor.buuauthorKurtulmuş, Ferhat
dc.contributor.buuauthorUlu, Tufan Can
dc.contributor.departmentUludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü.tr_TR
dc.contributor.departmentUludağ Üniversitesi/Ziraat Fakültesi/Bitki Koruma Bölümü Bölümü.tr_TR
dc.contributor.orcid0000-0003-3640-1474tr_TR
dc.contributor.researcheridR-8053-2016tr_TR
dc.contributor.researcheridB-6308-2011tr_TR
dc.contributor.scopusid15848202900tr_TR
dc.contributor.scopusid55955615200tr_TR
dc.date.accessioned2024-02-14T06:25:06Z
dc.date.available2024-02-14T06:25:06Z
dc.date.issued2013-11-05
dc.description.abstractEntomopathogenic nematodes are soil-dwelling living organisms which have been widely used for controlling agricultural insect pests as part of biological control. Because easy to use procedures have been developed for their application using standard sprayers, they are one of the best alternatives to pesticides. In laboratory procedures, counting is the most common, laborious, time-consuming and approximate part of the studies conducted on entomopathogenic nematodes. Here, a novel method was proposed to detect and count dead Heterorhabditis bacteriophora nematodes from microscope images using computer vision. The proposed method consisted of three main algorithm steps: pre-processing to obtain the medial axes of the nematode worms as accurately as possible, separation of overlapped nematode worms with a skeleton analysis; and detection of dead nematodes using two different straighter line detection methods. The proposed method was tested on 68 microscope images which included 935 live worms and 780 dead worms. Proposed method was able to detect the worms in microscope images successfully with recognition rates of over 85%. (C) 2013 IAgrE. Published by Elsevier Ltd. All rights reserved.en_US
dc.identifier.citationKurtulmuş, F. ve Ulu, T. C. (2013). "Detection of dead entomopathogenic nematodes in microscope images using computer vision". Biosystems Engineering, 118(1), 29-38.en_US
dc.identifier.endpage38tr_TR
dc.identifier.issn1537-5110
dc.identifier.issn1537-5129
dc.identifier.issue1tr_TR
dc.identifier.scopus2-s2.0-84889672096tr_TR
dc.identifier.startpage29tr_TR
dc.identifier.urihttps://doi.org/10.1016/j.biosystemseng.2013.11.005
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1537511013001815?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/11452/39692
dc.identifier.volume118tr_TR
dc.identifier.wos000331673700004
dc.indexed.pubmedPubMeden_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.journalBiosystems Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCaenorhabditis-elegansen_US
dc.subjectSteinernemaen_US
dc.subjectMachine visionen_US
dc.subjectHeterorhabditisen_US
dc.subjectPopulationsen_US
dc.subjectAgricultureen_US
dc.subject.scopusEntomopathogenic Nematodes; Biological Pest Control; Heterorhabditidaeen_US
dc.subject.wosAgricultural engineeringen_US
dc.subject.wosAgriculture, multidisciplinaryen_US
dc.titleDetection of dead entomopathogenic nematodes in microscope images using computer visionen_US
dc.typeArticleen_US
dc.wos.quartileQ1 (Agriculture, Multidisciplinary)en_US
dc.wos.quartileQ2 (Agricultural Engineering)en_US

Files

Collections