An application of Baker’s method to the Jeśmanowicz’ conjecture on primitive Pythagorean triples

dc.contributor.authorLe, Maohua
dc.contributor.buuauthorSoydan, Gökhan
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0002-6321-4132tr_TR
dc.contributor.scopusid23566953200tr_TR
dc.date.accessioned2024-01-15T11:54:32Z
dc.date.available2024-01-15T11:54:32Z
dc.date.issued2019-07-11
dc.description.abstractLet m, n be positive integers such that m > n, gcd(m,n) = 1 and m not equivalent to n(mod2) . In 1956, L. Jesmanowicz conjectured that the equation (m(2)-n(2))(x) + (2mn)(y) = (m(2) + n(2))(z) has only the positive integer solution (x,y,z)=(2,2,2). This conjecture is still unsolved. In this paper, combining a lower bound for linear forms in two logarithms due to M. Laurent with some elementary methods, we prove that if mn equivalent to 2(mod 4) and m > 30.8n, then Jesmanowicz' conjecture is true.en_US
dc.identifier.citationLe, M. ve Soydan, G. (2020). "An application of Baker’s method to the Jeśmanowicz’ conjecture on primitive Pythagorean triples". Periodica Mathematica Hungarica, 80(1), 74-80.tr_TR
dc.identifier.endpage80tr_TR
dc.identifier.issn0031-5303
dc.identifier.issn1588-2829
dc.identifier.issue1tr_TR
dc.identifier.scopus2-s2.0-85068902533tr_TR
dc.identifier.startpage74tr_TR
dc.identifier.urihttps://doi.org/10.1007/s10998-019-00295-0
dc.identifier.urihttps://link.springer.com/article/10.1007/s10998-019-00295-0
dc.identifier.urihttps://hdl.handle.net/11452/39031
dc.identifier.volume80tr_TR
dc.identifier.wos000511998900006
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.bapF-2016/9tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.relation.journalPeriodica Mathematica Hungaricaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectTernary purely exponential Diophantine equationen_US
dc.subjectPrimitive Pythagorean tripleen_US
dc.subjectJesmanowicz' conjectureen_US
dc.subjectApplication of Baker's methoden_US
dc.subject.scopusDiophantine Equation; Number; Linear Forms in Logarithmsen_US
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.titleAn application of Baker’s method to the Jeśmanowicz’ conjecture on primitive Pythagorean triplesen_US
dc.typeArticleen_US
dc.wos.quartileQ3en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections