Elliptic curves containing sequences of consecutive cubes

Thumbnail Image

Date

2018

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Rocky Mountain Mathematics Consortium

Abstract

Let E be an elliptic curve over Q described by y(2) = x(3)+Kx+L, where K, L is an element of Q. A set of rational points (x(i), y(i)) is an element of E(Q) for i = 1, 2,..., k, is said to be a sequence of consecutive cubes on E if the x-coordinates of the points x(i)'s for i = 1, 2,..., form consecutive cubes. In this note, we show the existence of an infinite family of elliptic curves containing a length-5-term sequence of consecutive cubes. Moreover, these five rational points in E(Q) are linearly independent, and the rank r of E(Q) is at least 5.

Description

Keywords

Mathematics, Elliptic curves, Rational points, Sequences of consecutive cubes, Arithmetic progressions

Citation

Çelik, G. S. ve Soydan, G. (2018). ''Elliptic curves containing sequences of consecutive cubes''. Rocky Mountain Journal of Mathematics, 48(7), 2163-2174.