Detecting corn tassels using computer vision and support vector machines

dc.contributor.authorKavdır, İsmail
dc.contributor.buuauthorKurtulmuş, Ferhat
dc.contributor.departmentUludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü.tr_TR
dc.contributor.researcheridR-8053-2016tr_TR
dc.contributor.scopusid15848202900tr_TR
dc.date.accessioned2022-08-22T11:31:17Z
dc.date.available2022-08-22T11:31:17Z
dc.date.issued2014-11-15
dc.description.abstractAn automated solution for maize detasseling is very important for maize growers who want to reduce production costs. Quality assurance of maize requires constantly monitoring production fields to ensure that only hybrid seed is produced. To achieve this cross-pollination, tassels of female plants have to be removed for ensuring all the pollen for producing the seed crop comes from the male rows. This removal process is called detasseling. Computer vision methods could help positioning the cutting locations of tassels to achieve a more precise detasseling process in a row. In this study, a computer vision algorithm was developed to detect cutting locations of corn tassels in natural outdoor maize canopy using conventional color images and computer vision with a minimum number of false positives. Proposed algorithm used color informations with a support vector classifier for image binarization. A number of morphological operations were implemented to determine potential tassel locations. Shape and texture features were used to reduce false positives. A hierarchical clustering method was utilized to merge multiple detections for the same tassel and to determine the final locations of tassels. Proposed algorithm performed with a correct detection rate of 81.6% for the test set. Detection of maize tassels in natural canopy images is a quite difficult task due to various backgrounds, different illuminations, occlusions, shadowed regions, and color similarities. The results of the study indicated that detecting cut location of corn tassels is feasible using regular color imagesen_US
dc.identifier.citationKurtulmuş, F. ve Kavdır, İ. (2014). "Detecting corn tassels using computer vision and support vector machines". Expert Systems with Applications, 41(16), 7390-7397.en_US
dc.identifier.endpage7397tr_TR
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.issue16tr_TR
dc.identifier.scopus2-s2.0-84904191292tr_TR
dc.identifier.startpage7390tr_TR
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2014.06.013
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0957417414003546
dc.identifier.urihttp://hdl.handle.net/11452/28305
dc.identifier.volume41tr_TR
dc.identifier.wos000340689700036
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.collaborationYurt içitr_TR
dc.relation.journalExpert Systems with Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSupport vector machineen_US
dc.subjectComputer visionen_US
dc.subjectImage processingen_US
dc.subjectMaize tassel detectionen_US
dc.subjectFeaturesen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectOperations research & management scienceen_US
dc.subjectColoren_US
dc.subjectComputer visionen_US
dc.subjectImage processingen_US
dc.subjectImage retrievalen_US
dc.subjectMathematical morphologyen_US
dc.subjectPlants (botany)en_US
dc.subjectQuality assuranceen_US
dc.subjectAutomated solutionsen_US
dc.subjectComputer vision algorithmsen_US
dc.subjectHierarchical clustering methodsen_US
dc.subjectImage binarizationen_US
dc.subjectMorphological operationsen_US
dc.subjectMultiple detectionen_US
dc.subjectShape and texturesen_US
dc.subjectSupport vector classifiersen_US
dc.subjectSupport vector machinesen_US
dc.subject.scopusCrops; Agricultural Machinery and Equipment; Tractorsen_US
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosOperations research & management scienceen_US
dc.titleDetecting corn tassels using computer vision and support vector machinesen_US
dc.typeArticle
dc.wos.quartileQ1en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: