On a class of Lebesgue-Ljunggren-Nagell type equations
dc.contributor.author | Dąbrowski, Andrzej | |
dc.contributor.buuauthor | Günhan, Nursena | |
dc.contributor.buuauthor | Soydan, Gökhan | |
dc.contributor.department | Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-1919-2431 | tr_TR |
dc.contributor.researcherid | HNT-0160-2023 | tr_TR |
dc.contributor.researcherid | HOC-4413-2023 | tr_TR |
dc.contributor.scopusid | 57214758192 | tr_TR |
dc.contributor.scopusid | 23566953200 | tr_TR |
dc.date.accessioned | 2024-02-01T05:57:31Z | |
dc.date.available | 2024-02-01T05:57:31Z | |
dc.date.issued | 2019-12-10 | |
dc.description.abstract | Text. Given odd, coprime integers a, b (a > 0), we consider the Diophantine equation ax(2) + b(2l) = 4y(n), x, y is an element of Z, l is an element of N, n odd prime, gcd(x, y) = 1. We completely solve the above Diophantine equation for a is an element of {7, 11, 19, 43, 67, 163}, and b a power of an odd prime, under the conditions 2(n-1)b(l) not equivalent to +/- 1(mod a) and gcd (n, b) = 1. For other square-free integers a > 3 and b a power of an odd prime, we prove that the above Diophantine equation has no solutions for all integers x, y with (gcd(x, y) = 1), l is an element of N and all odd primes n > 3, satisfying 2(n-1)b(l) not equivalent to +/- 1(mod a), gcd(n, b) = 1, and gcd(n, h(-a)) = 1, where h(-a) denotes the class number of the imaginary quadratic field Q(root-a). Video. For a video summary of this paper, please visit https://youtu.be/Q0peJ2GmqeM. | en_US |
dc.identifier.citation | Dabrowski, A. vd. (2020). "On a class of Lebesgue-Ljunggren-Nagell type equations". Journal of Number Theory, 215, 149-159. | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.jnt.2019.12.020 | |
dc.identifier.eissn | 1096-1658 | |
dc.identifier.endpage | 159 | tr_TR |
dc.identifier.issn | 0022-314X | |
dc.identifier.scopus | 2-s2.0-85079058409 | tr_TR |
dc.identifier.startpage | 149 | tr_TR |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0022314X20300330 | |
dc.identifier.uri | https://hdl.handle.net/11452/39422 | |
dc.identifier.volume | 215 | tr_TR |
dc.identifier.wos | 000551503800008 | |
dc.indexed.pubmed | PubMed | en_US |
dc.indexed.wos | SCIE | en_US |
dc.language.iso | en | en_US |
dc.publisher | Academic Press Elsevier Science | en_US |
dc.relation.collaboration | Yurtdışı | tr_TR |
dc.relation.journal | Journal of Number Theory | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.relation.tubitak | 117F287 | tr_TR |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Diophantine equation | en_US |
dc.subject | Lehmer number | en_US |
dc.subject | Fibonacci number | en_US |
dc.subject | Class number | en_US |
dc.subject | Modular form | en_US |
dc.subject | Elliptic curve | en_US |
dc.subject | Diophantine equations | en_US |
dc.subject | Fibonacci | en_US |
dc.subject | Lucas | en_US |
dc.subject | Mathematics | en_US |
dc.subject.scopus | Diophantine Equation; Number; Linear Forms in Logarithms | en_US |
dc.subject.wos | Mathematics | en_US |
dc.title | On a class of Lebesgue-Ljunggren-Nagell type equations | en_US |
dc.type | Article | en_US |
dc.wos.quartile | Q3 (Mathematics) | en_US |