On a class of Lebesgue-Ljunggren-Nagell type equations

dc.contributor.authorDąbrowski, Andrzej
dc.contributor.buuauthorGünhan, Nursena
dc.contributor.buuauthorSoydan, Gökhan
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0002-1919-2431tr_TR
dc.contributor.researcheridHNT-0160-2023tr_TR
dc.contributor.researcheridHOC-4413-2023tr_TR
dc.contributor.scopusid57214758192tr_TR
dc.contributor.scopusid23566953200tr_TR
dc.date.accessioned2024-02-01T05:57:31Z
dc.date.available2024-02-01T05:57:31Z
dc.date.issued2019-12-10
dc.description.abstractText. Given odd, coprime integers a, b (a > 0), we consider the Diophantine equation ax(2) + b(2l) = 4y(n), x, y is an element of Z, l is an element of N, n odd prime, gcd(x, y) = 1. We completely solve the above Diophantine equation for a is an element of {7, 11, 19, 43, 67, 163}, and b a power of an odd prime, under the conditions 2(n-1)b(l) not equivalent to +/- 1(mod a) and gcd (n, b) = 1. For other square-free integers a > 3 and b a power of an odd prime, we prove that the above Diophantine equation has no solutions for all integers x, y with (gcd(x, y) = 1), l is an element of N and all odd primes n > 3, satisfying 2(n-1)b(l) not equivalent to +/- 1(mod a), gcd(n, b) = 1, and gcd(n, h(-a)) = 1, where h(-a) denotes the class number of the imaginary quadratic field Q(root-a). Video. For a video summary of this paper, please visit https://youtu.be/Q0peJ2GmqeM.en_US
dc.identifier.citationDabrowski, A. vd. (2020). "On a class of Lebesgue-Ljunggren-Nagell type equations". Journal of Number Theory, 215, 149-159.en_US
dc.identifier.doihttps://doi.org/10.1016/j.jnt.2019.12.020
dc.identifier.eissn1096-1658
dc.identifier.endpage159tr_TR
dc.identifier.issn0022-314X
dc.identifier.scopus2-s2.0-85079058409tr_TR
dc.identifier.startpage149tr_TR
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022314X20300330
dc.identifier.urihttps://hdl.handle.net/11452/39422
dc.identifier.volume215tr_TR
dc.identifier.wos000551503800008
dc.indexed.pubmedPubMeden_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherAcademic Press Elsevier Scienceen_US
dc.relation.collaborationYurtdışıtr_TR
dc.relation.journalJournal of Number Theoryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.relation.tubitak117F287tr_TR
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDiophantine equationen_US
dc.subjectLehmer numberen_US
dc.subjectFibonacci numberen_US
dc.subjectClass numberen_US
dc.subjectModular formen_US
dc.subjectElliptic curveen_US
dc.subjectDiophantine equationsen_US
dc.subjectFibonaccien_US
dc.subjectLucasen_US
dc.subjectMathematicsen_US
dc.subject.scopusDiophantine Equation; Number; Linear Forms in Logarithmsen_US
dc.subject.wosMathematicsen_US
dc.titleOn a class of Lebesgue-Ljunggren-Nagell type equationsen_US
dc.typeArticleen_US
dc.wos.quartileQ3 (Mathematics)en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dabrowski_vd_2020.pdf
Size:
167.45 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections