Multi-surrogate-assisted metaheuristics for crashworthiness optimisation

dc.contributor.authorAye, Cho Mar
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorBureerat, Sujin
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.tr_TR
dc.contributor.researcheridF-7426-2011tr_TR
dc.contributor.scopusid7102365439tr_TR
dc.date.accessioned2022-12-13T07:19:31Z
dc.date.available2022-12-13T07:19:31Z
dc.date.issued2019
dc.description.abstractThis work proposes a multi-surrogate-assisted optimisation and performance investigation of several newly developed metaheuristics (MHs) for the optimisation of vehicle crashworthiness. The optimisation problem for car crashworthiness is posed to find the shape and size of a crash box while the objective function is to maximise the total energy absorption subject to a mass constraint. Two main numerical experiments are conducted. Firstly, the performance of different surrogate models along with the proposed multi-surrogate model is investigated. Secondly, several MHs are applied to tackle the proposed crashworthiness optimisation problem by employing the best obtained surrogate model. The results reveal that the proposed multi-surrogate model is the best performer. Among the several MHs used in this study, sine cosine algorithm is the best algorithm for the proposed multi-surrogate model. Based on this study, the application of the proposed multi-surrogate model is better than using one particular traditional surrogate model, especially for constrained optimisation.en_US
dc.description.sponsorshipThailand Research Fund (TRF)tr_TR
dc.identifier.citationAye, C. M. vd. (2019). ''Multi-surrogate-assisted metaheuristics for crashworthiness optimisation''. International Journal of Vehicle Desing, 80(2-4), 223-240.en_US
dc.identifier.endpage240tr_TR
dc.identifier.issn0143-3369
dc.identifier.issn1741-5314
dc.identifier.issue2-4tr_TR
dc.identifier.scopus2-s2.0-85092266557tr_TR
dc.identifier.startpage223tr_TR
dc.identifier.urihttps://doi.org/10.1504/IJVD.2019.109866
dc.identifier.urihttps://www.inderscienceonline.com/doi/10.1504/IJVD.2019.109866
dc.identifier.urihttp://hdl.handle.net/11452/29841
dc.identifier.volume80tr_TR
dc.identifier.wos000576400300008
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherInderscienceen_US
dc.relation.collaborationYurt dışıtr_TR
dc.relation.collaborationSanayitr_TR
dc.relation.journalInternational Journal of Vehicle Designen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSurrogate-assisted optimisationen_US
dc.subjectCrash box designen_US
dc.subjectEvolutionary algorithmen_US
dc.subjectConstrained optimisationen_US
dc.subjectMeta-heuristicsen_US
dc.subjectCrashworthiness optimisationen_US
dc.subjectKriging modelen_US
dc.subjectThin-wall structuresen_US
dc.subjectWater cycleen_US
dc.subjectGrey wolfen_US
dc.subjectAnt lionen_US
dc.subjectDesingen_US
dc.subjectAlgorithmen_US
dc.subjectUncertaintyen_US
dc.subjectPerformanceen_US
dc.subjectAluminumen_US
dc.subjectSearchen_US
dc.subjectAccidentsen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectConstrained optimizationen_US
dc.subjectMass constraintsen_US
dc.subjectMeta heuristicsen_US
dc.subjectNumerical experimentsen_US
dc.subjectObjective functionsen_US
dc.subjectOptimisation problemsen_US
dc.subjectShape and sizeen_US
dc.subjectSine-cosine algorithmen_US
dc.subjectSurrogate modelen_US
dc.subjectCrashworthinessen_US
dc.subjectEngineeringen_US
dc.subjectTransportationen_US
dc.subject.scopusCrashworthiness; Energy Absorption; Tubeen_US
dc.subject.wosEngineering, mechanicalen_US
dc.subject.wosTransportation science & technologyen_US
dc.titleMulti-surrogate-assisted metaheuristics for crashworthiness optimisationen_US
dc.typeArticle
dc.wos.quartileQ3en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: