Discriminating drying method of tarhana using computer vision
dc.contributor.author | Deǧirmencioǧlu, Nurcan | |
dc.contributor.buuauthor | Kurtulmuş, Ferhat | |
dc.contributor.buuauthor | Gürbüz, Ozan | |
dc.contributor.department | Uludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü. | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Ziraat Fakültesi/Gıda Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0001-7871-1628 | tr_TR |
dc.contributor.researcherid | R-8053-2016 | tr_TR |
dc.contributor.researcherid | K-1499-2019 | tr_TR |
dc.contributor.scopusid | 15848202900 | tr_TR |
dc.contributor.scopusid | 8528582100 | tr_TR |
dc.date.accessioned | 2024-02-15T06:20:43Z | |
dc.date.available | 2024-02-15T06:20:43Z | |
dc.date.issued | 2014-03-19 | |
dc.description.abstract | Tarhana is a traditionally fermented wheat flour product of Turkey which has high nutritional value. A rapid and objective evaluation of tarhana quality by assessing the used drying method is important for producers and packaging companies. A computer vision method was developed to discriminate between drying methods of tarhana. Tarhana samples were prepared with three drying methods: sun dried, oven dried and microwave dried. An image acquisition station was constituted under artificial illumination. Different types of machine learning methods and feature selection methods were tested to find an effective system for the discrimination between drying methods of tarhana using visual texture features with different color components. Experimental results showed that the best accuracy rate (99.5%) was achieved with a K-nearest-neighbors classifier through the feature model based on stepwise discriminant analysis. | en_US |
dc.identifier.citation | Kurtulmuş, F. vd. (2014). "Discriminating drying method of tarhana using computer vision". Journal of Food Process Engineering, 37(4), 362-374. | en_US |
dc.identifier.endpage | 374 | tr_TR |
dc.identifier.issn | 0145-8876 | |
dc.identifier.issn | 1745-4530 | |
dc.identifier.issue | 4 | tr_TR |
dc.identifier.scopus | 2-s2.0-84904418804 | tr_TR |
dc.identifier.startpage | 362 | tr_TR |
dc.identifier.uri | https://doi.org/10.1111/jfpe.12092 | |
dc.identifier.uri | https://onlinelibrary.wiley.com/doi/10.1111/jfpe.12092 | |
dc.identifier.uri | https://hdl.handle.net/11452/39729 | |
dc.identifier.volume | 37 | tr_TR |
dc.identifier.wos | 000339718300003 | |
dc.indexed.pubmed | PubMed | en_US |
dc.indexed.wos | SCIE | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.journal | Journal of Food Process Engineering | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Color texture features | en_US |
dc.subject | Trees | en_US |
dc.subject | Hot air | en_US |
dc.subject | Products | en_US |
dc.subject | Fermentation | en_US |
dc.subject | Algorithm | en_US |
dc.subject | Classification | en_US |
dc.subject | Inspection | en_US |
dc.subject | Food | en_US |
dc.subject | Engineering, chemical | en_US |
dc.subject | Food science & technology | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Computer vision | en_US |
dc.subject | Learning systems | en_US |
dc.subject | Discriminant analysis | en_US |
dc.subject | Industry | en_US |
dc.subject | Acquisition station | en_US |
dc.subject | Visual texture features | en_US |
dc.subject | Computer vision system | en_US |
dc.subject | Stepwise discriminant analysis | en_US |
dc.subject | Feature selection methods | en_US |
dc.subject | Packaging companies | en_US |
dc.subject | Machine learning methods | en_US |
dc.subject | Objective evaluation | en_US |
dc.subject | Drying | en_US |
dc.subject.scopus | Bulgur; Cereals; Debranning | en_US |
dc.subject.wos | Engineering, chemical | en_US |
dc.subject.wos | Food science & technology | en_US |
dc.title | Discriminating drying method of tarhana using computer vision | en_US |
dc.type | Article | en_US |
dc.wos.quartile | Q3 (Food Science & Technology) | en_US |
dc.wos.quartile | Q4 (Engineering, Chemical) | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: