Performance of steel micro fiber reinforced mortar mixtures containing plain, binary and ternary cementitious systems
dc.contributor.author | Yüksel, Cihat | |
dc.contributor.author | Hosseinnezhad, Hojjat | |
dc.contributor.author | Ramyar, Kambiz | |
dc.contributor.buuauthor | Mardani, Ali Aghabağlou | |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0003-0326-5015 | tr_TR |
dc.contributor.researcherid | AAJ-6415-2021 | tr_TR |
dc.contributor.scopusid | 57669486700 | tr_TR |
dc.date.accessioned | 2022-12-07T08:25:33Z | |
dc.date.available | 2022-12-07T08:25:33Z | |
dc.date.issued | 2016 | |
dc.description.abstract | Steel micro fibers provide strengthening, toughening and durability improvement mechanisms in cementitious composites. However, there is not much data in the literature regarding how the extent of their effectiveness changes depending on the type of matrix being reinforced. For clarifying this point, the influence of a constant volumetric ratio (1%) of 6 mm long steel micro fibers on the performance of 5 mortar mixtures was investigated and were prepared using plain, binary and ternary cementitious systems. A total of 10 mixtures were cast. The mineral admixtures used in the study include silica fume (SF), metakaolin (MK) and a Class C fly ash (FA). While the replacement levels of SF and MK were 10% by weight of the total mass of the binder, this ratio was chosen as 30% for FA. In addition to the behavior of the mixtures under compressive, flexural and impact loads, abrasion, water absorption, chloride ion penetration, freezing-thawing resistance and drying shrinkage characteristics of the mixtures were determined. Test results indicate that generally the refinement in the pore structure of the matrix provided by mineral admixtures and the increase in resistance against growth and coalescence of micro-cracks provided by fibers produce a synergistic effect and improve the investigated performances of the mixtures. | en_US |
dc.identifier.citation | Mardani A. A. vd. (2016). "Performance of steel micro fiber reinforced mortar mixtures containing plain, binary and ternary cementitious systems". Journal of Green Building, 11(4), 109-130. | en_US |
dc.identifier.endpage | 130 | tr_TR |
dc.identifier.issn | 1552-6100 | |
dc.identifier.issn | 1943-4618 | |
dc.identifier.issue | 4 | tr_TR |
dc.identifier.scopus | 2-s2.0-85009383127 | tr_TR |
dc.identifier.startpage | 109 | tr_TR |
dc.identifier.uri | https://doi.org/10.3992/jgb.11.4.109.1 | |
dc.identifier.uri | https://meridian.allenpress.com/jgb/article/11/4/109/116123/PERFORMANCE-OF-STEEL-MICRO-FIBER-REINFORCED-MORTAR | |
dc.identifier.uri | http://hdl.handle.net/11452/29722 | |
dc.identifier.volume | 11 | tr_TR |
dc.identifier.wos | 000393037400006 | |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.wos | AHCI | en_US |
dc.language.iso | en | en_US |
dc.publisher | College Publishing | en_US |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.relation.journal | Journal of Green Building | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Architecture | en_US |
dc.subject | Steel micro fiber | en_US |
dc.subject | Mineral admixtures | en_US |
dc.subject | Mechanical and transport properties | en_US |
dc.subject | Durability performance | en_US |
dc.subject | High-strength concrete | en_US |
dc.subject | Self-compacting concrete | en_US |
dc.subject | Palm shell concrete | en_US |
dc.subject | Fly-ash concrete | en_US |
dc.subject | Abrasion resistance | en_US |
dc.subject | Mechanical-properties | en_US |
dc.subject | Impact resistance | en_US |
dc.subject | Toughness characterization | en_US |
dc.subject | Durability properties | en_US |
dc.subject | Drying shrinkage | en_US |
dc.subject | Binary mixtures | en_US |
dc.subject | C (programming language) | en_US |
dc.subject | Chlorine compounds | en_US |
dc.subject | Durability | en_US |
dc.subject | Fly ash | en_US |
dc.subject | Minerals | en_US |
dc.subject | Mortar | en_US |
dc.subject | Reinforcement | en_US |
dc.subject | Silica fume | en_US |
dc.subject | Water absorption | en_US |
dc.subject | Cementitious composites | en_US |
dc.subject | Chloride ion penetration | en_US |
dc.subject | Durability improvement | en_US |
dc.subject | Freezing-thawing resistances | en_US |
dc.subject | Micro-fiber | en_US |
dc.subject | Ternary cementitious systems | en_US |
dc.subject | Steel fibers | en_US |
dc.subject.scopus | Mechanical Properties; Self Compacting Concrete; Concrete Slabs | en_US |
dc.subject.wos | Architecture | en_US |
dc.title | Performance of steel micro fiber reinforced mortar mixtures containing plain, binary and ternary cementitious systems | en_US |
dc.type | Article |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: