Akademik yazarların yayınları arasındaki ilişkinin sosyal ağ benzerlik yöntemleri ile tespit edilmesi

dc.contributor.authorÖztemiz, Furkan
dc.contributor.authorKarcı, Ali
dc.date.accessioned2020-09-17T10:29:48Z
dc.date.available2020-09-17T10:29:48Z
dc.date.issued2020-02-28
dc.description.abstractSosyal ağlar günümüzde oldukça popüler bir konumda bulunmaktadır. İnsanlar tarafından yoğun olarak kullanılan bir platform halini almıştır. Bu durum yüksek miktarda veri üretimine neden olmaktadır. Bu verilerin anlamlı ve faydalı bir forma dönüştürebilmek için birçok yöntem geliştirilmiştir. Bu yöntemler arasında veri madenciliği teknikleri ilk sıralarda yer almaktadır. Bu çalışmada veri madenciliği ve sosyal ağ yöntemleri kullanılarak yazarların yayınlarında belirtmiş oldukları anahtar kelimelere göre ilgili yazarlar arasındaki çalışma alanı benzerlikleri tespit edilmiştir. Veri seti olarak IDAP 2018(International Conference on Artificial Intelligence and Data Processing ) sempozyumunun yayın verileri kullanılmıştır. 536 yazar ve 1188 anahtar kelimeden oluşan veri setine Jaccard, Euclidean, Cosine benzerlik yöntemleri uygulanmıştır ve çalışmalarına göre yazarların yayınları arasındaki benzerlikler analiz edilerek karşılaştırılmıştır. Yazarların sonraki yayınlarında birbirleri ile çalışma yapabilmeleri açısından yönlendirici sonuçlar elde edilmiştir. Verilerin analize uygun forma getirilmesi için SQL Server kullanılırken, analiz ve görsel öğelerin oluşturulması için ise, R dili ve R Studio IDE kullanılmıştır.tr_TR
dc.description.abstractSocial networks are nowadays very popular. It has become an intensively used platform by people. This status causes a high amount of data production. Many methods have been developed to transform these data into a meaningful and useful form. Data mining techniques are at the top of the list among these methods. In this study, data mining and social networking methods were used to determine the similarity of the study area between the related authors according to the key words that the authors mentioned in their publications. The publication data of the IDAP 2018 symposium was used as a data set. Jaccard, Euclidean, Cosine similarity methods were applied the data set consisted of 536 authors and 1188 keywords and similarities among the authors publications were compared through analyzed. In the subsequent publications of the authors, guiding results were obtained for them to work with each other. while SQL Server was used to convert data to the appropriate format for analysis, for the analysis and creation of visual elements, the R language and R Studio IDE were used.en_US
dc.identifier.citationÖztemiz, F. ve Karcı, A. (2020). "Akademik yazarların yayınları arasındaki ilişkinin sosyal ağ benzerlik yöntemleri ile tespit edilmesi". Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 591-608.tr_TR
dc.identifier.endpage608tr_TR
dc.identifier.issn2148-4147
dc.identifier.issn2148-4155
dc.identifier.issue1tr_TR
dc.identifier.startpage591tr_TR
dc.identifier.urihttps://dergipark.org.tr/tr/download/article-file/1072984
dc.identifier.urihttp://hdl.handle.net/11452/12723
dc.identifier.volume25tr_TR
dc.language.isotrtr_TR
dc.publisherBursa Uludağ Üniversitesitr_TR
dc.relation.journalUludağ Üniversitesi Mühendislik Dergisi / Uludağ University Journal of The Faculty of Engineeringtr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBenzerlik yöntemleritr_TR
dc.subjectJaccardtr_TR
dc.subjectİbn-i sinatr_TR
dc.subjectKosinüstr_TR
dc.subjectÇizgetr_TR
dc.subjectSimilarity methoden_US
dc.subjectJaccarden_US
dc.subjectEuclideanen_US
dc.subjectCosineen_US
dc.subjectGraphen_US
dc.titleAkademik yazarların yayınları arasındaki ilişkinin sosyal ağ benzerlik yöntemleri ile tespit edilmesitr_TR
dc.title.alternativeThe determination of the relationship between the publications of the academic authors by the social network similarity methodsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
25_1_40.pdf
Size:
973.67 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: