Green citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditions
dc.contributor.author | Lee, Won Suk | |
dc.contributor.buuauthor | Kurtulmuş, Ferhat | |
dc.contributor.buuauthor | Vardar, Ali | |
dc.contributor.department | Uludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü. | tr_TR |
dc.contributor.researcherid | AAH-5008-2021 | tr_TR |
dc.contributor.researcherid | R-8053-2016 | tr_TR |
dc.contributor.scopusid | 15848202900 | tr_TR |
dc.contributor.scopusid | 15049958800 | tr_TR |
dc.date.accessioned | 2021-11-01T11:16:09Z | |
dc.date.available | 2021-11-01T11:16:09Z | |
dc.date.issued | 2011-09 | |
dc.description.abstract | A machine vision algorithm was developed to detect and count immature green citrus fruits in natural canopies using color images. A total of 96 images were acquired in October 2010 from an experimental citrus grove in the University of Florida, Gainesville, Florida. Thirty-two of the total 96 images were selected randomly and used for training the algorithm, and 64 images were used for validation. Color, circular Gabor texture analysis and a novel 'eigenfruit' approach (inspired by the 'eigenface' face detection and recognition method) were used for green citrus detection. A shifting sub-window at three different scales was used to scan the entire image for finding the green fruits. Each sub-window was classified three times by eigenfruit approach using intensity component, eigenfruit approach using saturation component, and circular Gabor texture. Majority voting was performed to determine the results of the sub-window classifiers. Blob analysis was performed to merge multiple detections for the same fruit. For the validation set, 75.3% of the actual fruits were successfully detected using the proposed algorithm. | en_US |
dc.description.sponsorship | YÖK | tr_TR |
dc.identifier.citation | Kurtulmuş, F. vd. (2011). “Green citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditions”. Computers and Electronics in Agriculture, 78(2), 140-149. | en_US |
dc.identifier.endpage | 149 | tr_TR |
dc.identifier.issn | 0168-1699 | |
dc.identifier.issn | 1872-7107 | |
dc.identifier.issue | 2 | tr_TR |
dc.identifier.scopus | 2-s2.0-80052534605 | tr_TR |
dc.identifier.startpage | 140 | tr_TR |
dc.identifier.uri | https://doi.org/10.1016/j.compag.2011.07.001 | |
dc.identifier.uri | https://dl.acm.org/doi/abs/10.1016/j.compag.2011.07.001 | |
dc.identifier.uri | http://hdl.handle.net/11452/22539 | |
dc.identifier.volume | 78 | tr_TR |
dc.identifier.wos | 000295758900003 | |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.wos | SCIE | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.relation.journal | Computers and Electronics in Agriculture | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Computer vision | en_US |
dc.subject | Eigenfruit | en_US |
dc.subject | Fruit detection | en_US |
dc.subject | Green citrus | en_US |
dc.subject | Precision agriculture | en_US |
dc.subject | Yield mapping | en_US |
dc.subject | Rotation-invariant | en_US |
dc.subject | Face detection | en_US |
dc.subject | Filter design | en_US |
dc.subject | Florida [United States] | en_US |
dc.subject | United States | en_US |
dc.subject | Citrus | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Color | en_US |
dc.subject | Content based retrieval | en_US |
dc.subject | Face recognition | en_US |
dc.subject | Textures | en_US |
dc.subject | Blob analysis | en_US |
dc.subject | Citrus detection | en_US |
dc.subject | Citrus groves | en_US |
dc.subject | Color images | en_US |
dc.subject | Different scale | en_US |
dc.subject | Eigenfaces | en_US |
dc.subject | Face detection and recognition | en_US |
dc.subject | Florida | en_US |
dc.subject | Gabor texture | en_US |
dc.subject | Green fruit | en_US |
dc.subject | Machine vision algorithm | en_US |
dc.subject | Majority voting | en_US |
dc.subject | Multiple detection | en_US |
dc.subject | University of Florida | en_US |
dc.subject | Yield mapping | en_US |
dc.subject | Algorithm | en_US |
dc.subject | Computer | en_US |
dc.subject | Eigenvalue | en_US |
dc.subject | Fruit | en_US |
dc.subject | Precision agriculture | en_US |
dc.subject | Texture | en_US |
dc.subject | Yield response | en_US |
dc.subject | Citrus fruits | en_US |
dc.subject | Agriculture | en_US |
dc.subject | Computer science | en_US |
dc.subject.scopus | Harvesting; End Effectors; Malus | en_US |
dc.subject.wos | Agriculture, multidisciplinary | en_US |
dc.subject.wos | Computer science, interdisciplinary applications | en_US |
dc.title | Green citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditions | en_US |
dc.type | Article | |
dc.wos.quartile | Q1 (Agriculture, multidisciplinary) | en_US |
dc.wos.quartile | Q2 (Computer science, interdisciplinary applications) | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: