Person:
GÖK YURTSEVEN, DUYGU

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

GÖK YURTSEVEN

First Name

DUYGU

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Glutamatergic activation of A1 and A2 noradrenergic neurons in the rat brain stem
    (Medicinska Naklada, 2019-07-10) Gök-Yurtseven, Duygu; Kafa, İlker M.; Minbay, Zehra; Eyigör, Özhan; GÖK YURTSEVEN, DUYGU; KAFA, İLKER MUSTAFA; MİNBAY, FATMA ZEHRA; EYİGÖR, ÖZHAN; Fen Bilimleri Enstitüsü; Histoloji Bölümü ve Embriyoloji Bilim Dalı; 0000-0001-8309-0934; 0000-0003-3463-7483; AAW-4867-2021; AAG-7125-2021; ABE-5128-2020; ABC-1475-2020
    Aim To analyze the effects of glutamatergic agonists and antagonists on the activation of the A1 and A2 noradrenergic neurons localized in caudal ventrolateral medulla and nucleus tractus solitarii, respectively.Methods Rats were injected with glutamatergic agonists - kainic acid, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or N-methyl-D-aspartic acid (NMDA), and the brain sections were prepared for immunohistochemistry. Before agonist injections, antagonists - 6-cyano-7-nitroquinoxaline-2,3-dione or dizocilpine were administered. The expression of c-Fos, as the neuronal activation marker, and tyrosine hydroxylase (TH), as the marker of noradrenergic neurons was assessed with dual immunohistochemistry. The percentage of c-Fos-positive noradrenergic neurons relative to all TH-positive neurons in the respective areas of the brain stem was calculated.Results All three glutamatergic agonists significantly increased the number of the c-Fos-positive noradrenergic neurons in both the A1 and A2 area when compared with control animals. Kainic acid injection activated about 57% of TH-positive neurons in A1 and 40% in A2, AMPA activated 26% in A1 and 38% in A2, and NMDA 77% in A1 and 22% in A2. The injections of appropriate glutamatergic antagonists greatly decreased the number of activated noradrenergic neurons.Conclusion Our results suggest that noradrenergic neurons are regulated and/or activated by glutamatergic system and that these neurons express functional glutamate receptors.
  • Publication
    The localization of R-spondin1 and R-spondin 3 peptides in rat hypothalamus: An immunohistochemical study
    (Soc Chilena Anatomia, 2023-12-01) Gök, D. Yurtseven; Coşkan, N.; Topal, G.; Akbulut, N. Hasanoğlu; Eyigör, O.; GÖK YURTSEVEN, DUYGU; Coşkan, N.; Topal, G.; HASANOĞLU AKBULUT, NURSEL; EYİGÖR, ÖZHAN; Tıp Fakültesi; Histoloji ve Embriyoloji Ana Bilim Dalı; JYE-8429-2024; JYM-2286-2024; ECI-5570-2022; JXZ-3834-2024; JYE-8338-2024
    The R-spondin protein family is a group of proteins that enhance Wnt/b-catenin signaling and have pleiotropic functions in stem cell growth and development. In the literature reviews, there is no histomorphological study showing the localization and distribution of R-spondins in different hypothalamic nuclei. For this reason, the purpose of this study was to determine the localization, distribution characteristics, and densities in the hypothalamic nuclei of neurons expressing Rspo1 and Rspo3 proteins. The free-floating brain sections of the male rats who were not exposed to any treatment were stained with the indirect immunoperoxidase method using the relevant antibodies. As a result of the immunohistochemical studies, it was determined that neurons expressing the Rspo1 protein were found in large numbers in the supraoptic nucleus (SON), the suprachiasmatic nucleus (SCh), anterior paraventricular nucleus, periventricular hypothalamic nucleus (PeV), anterior hypothalamic area, magnocellular preoptic nucleus (MCPO) and the lateral hypothalamic area (LH) from the hypothalamic nuclei, while they were localized in fewer numbers in the arcuate nucleus (ARC). Rspo3 protein expression was found in neurons localized in the hypothalamic nuclei SON, paraventricular nucleus (PVN), PeV, ARC, ventromedial nucleus (VMH), LH, anterior parvicellular nucleus, and zona inserta (ZI). In addition, neurons synthesizing both peptides were found in the cortex and hippocampus regions (H). Rspo1 and 3 proteins are expressed in hypothalamic energy homeostatic areas, thus these proteins may be involved in the regulation of food intake.