Person:
SEVGİ, TUBA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

SEVGİ

First Name

TUBA

Name

Search Results

Now showing 1 - 3 of 3
  • Publication
    Investigation of effects of protease enzyme produced by Bacillus subtilis 168 E6-5 and commercial enzyme on physical properties of woolen fabric
    (Taylor, 2019-06-04) Demirkan, Elif; Kut, Dilek; Sevgi, Tuba; Doğan, Meral; Baygın, Eren; DEMİRKAN, ELİF; KUT, YAŞAR DİLEK; SEVGİ, TUBA; Doğan, Meral; Baygın, Eren; Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Biyoloji Bölümü; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü; 0000-0002-5292-9482; 0000-0002-9059-0838; 0000-0002-7528-9529; AAG-7112-2021; AAH-4335-2021; ABI-4472-2020; CMN-9718-2022; CFF-0023-2022
    Wool is one of the most important fibers in textile industry, and has been commonly used for producing value added products due to its properties of lightness, warmth, softness, and smoothness. However, the special scale structure in wool cuticle can cause felting shrinkage of wool fabrics. Proteases have been widely used to modify the surface of wool to prevent wool felting, due to their ability to catalyze the hydrolysis of peptide bonds in wool scales. Although the treatment of wool with proteases was considered as an environmentally friendly technique to provide wool fabrics with shrink resistance properties, proteases exhibited low efficacy in removing the cuticle scales because of the highly cross-linked barriers. In this study, wool fabric was treated with protease enzyme obtained from novel isolated bacteria and commercial protease enzyme, and the results were compared. The tear strength, pilling changes in Delta E values, whiteness and yellowness values of wool were controlled. Results showed that treatment with Bacillus subtilis 168 E6-5 protease enzyme yielded improvements in the physical properties of wool fabric compared with commercial enzyme.
  • Publication
    Evaluation of the effects of temperature, light, and UV-C radiation on HSP70A expression in chlamydomonas reinhardtii
    (Tübitak Bilimsel ve Teknolojik Araştırma Kurumu, 2021-01-01) Sevgi, Tuba; Demirkan, Elif; SEVGİ, TUBA; DEMİRKAN, ELİF; Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Biyoloji Bölümü; 0000-0002-5292-9482; 0000-0002-7528-9529; AAG-7112-2021; ABI-4472-2020
    In this study, various physical parameters (temperature, light intensity and UV-C radiation) which could be effective in heat shock response on C.reinhardtii by using molecular tools were investigated. In total, 256 transformants were obtained, among them, 160 transformants had continuous expression while 96 of them had heat-inducible expression. In these transformants, arylsulfatase activities were detected qualitatively and quantitatively. The best two transformants were selected and used in studies. To determine the effect of temperature, the cells were shifted from 23 degrees C to 35 degrees C, 37 degrees C, 40 degrees C and 42 degrees C. The heat shock response was induced at all temperatures. In investigating the effect of light intensity, 0, 14, 28, 70, 140 mu mol E.m(-2)s(-1) were used. It was found that the light intensity of 28 mu mol E.m(-2)s(-1) and above increased ARS activity. On the other hand, ultraviolet C radiation application was carried out for periods of 2, 6 and 12 h, and no significant change in ARS activity was observed. In order to compare the selected arylsulfatase activity results in the study, real-time polymerase chain reaction trials were conducted at the transcript level, and parallel results were obtained. As a result of the study, it was determined that the heat shock response was triggered by temperature and light intensity. These might be also important for plant stress and ecological studies.
  • Publication
    Immobilization of bacillus subtilis e6-5 protease and commercial protease in nanofibrils containing different amino acids
    (Trakya Univ Balkan Yerlesesi Enstituler Binasi, 2020-04-01) Güler, Baran Enes; Demirkan, Elif; DEMİRKAN, ELİF; Sevgi, Tuba; SEVGİ, TUBA; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/ Biyoloji Anabilim Dalı.; 0000-0001-7967-9041; 0000-0002-5292-9482; GWU-7780-2022; AAG-7112-2021; ABI-4472-2020
    In this study, polyamide 6 polymer surfaces that have a high surface area were produced by electrospinning method with the participation of Glycine, Tyrosine and Glutamic acid amino acids, and lyophilized Bacillus subtilis E6-5 protease and commercial protease enzymes were immobilized on nanofibrils. Enzyme reusability were investigated. The immobilization efficiencies of the enzymes were approximately between 50-55 %. In studies with lyophilized Bacillus protease, glutaraldehyde activated PA6 nanofibrils and glutaraldehyde unactivated PA6 nanofibrils were found to be more immobilized in the presence of Glutamic acid. Although the lyophilized protease enzyme immobilized on non-glutaraldehyde activated and activated surfaces has been used 4 times, the best functional stability has been achieved with 2 times use. In pure PA6/Glutamic acid nanofibrils, the immobilization yield of the two times used enzymes was found to be 38 %. In glutaraldehyde-activated PA6 nanofibrils, the PA6/Glutamic acid nanofibril surfaces were found to have 65 % immobilization yield of the two repetitive used enzymes. The enzyme immobilization efficiency has been doubled by glutaraldehyde activation of the nanofibrils. In studies with commercial protease, the most functional stability was obtained for 3 repeated uses, although the enzyme was used 6 times on the non-glutaraldehyde activated nanofibril surfaces. The most successful immobilization was found in 58 % of PA6 nanofibrils. In glutaraldehyde-activated PA6 nanofibrils, the enzyme was found to be used 6 times, but the functional stability was maintained as much as 4 times of repeated use.