Publication:
Optimum design of a seat bracket using artificial neural networks and dandelion optimization algorithm

dc.contributor.authorErdaş, Mehmet Umut
dc.contributor.authorKopar, Mehmet
dc.contributor.authorYıldız, Betül Sultan
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.buuauthorErdaş, Mehmet Umut
dc.contributor.buuauthorKopar, Mehmet
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü.
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridAAH-6495-2019
dc.contributor.researcheridF-7426-2011
dc.contributor.researcheridCNV-1200-2022
dc.contributor.researcheridDBQ-9849-2022
dc.date.accessioned2024-10-14T06:55:47Z
dc.date.available2024-10-14T06:55:47Z
dc.date.issued2023-10-13
dc.description.abstractNature-inspired metaheuristic algorithms are gaining popularity with their easy applicability and ability to avoid local optimum points, and they are spreading to wide application areas. Meta-heuristic optimization algorithms are used to achieve an optimum design in engineering problems aiming to obtain lightweight designs. In this article, structural optimization methods are used in the process of achieving the optimum design of a seat bracket. As a result of topology optimization, a new concept design of the bracket was created and used in shape optimization. In the shape optimization, the mass and stress values obtained depending on the variables, constraint, and objective functions were created by using artificial neural networks. The optimization problem based on mass minimization is solved by applying the dandelion optimization algorithm and verified by finite element analysis.
dc.identifier.doi10.1515/mt-2023-0201
dc.identifier.endpage1775
dc.identifier.issn0025-5300
dc.identifier.issue12
dc.identifier.startpage1767
dc.identifier.urihttps://doi.org/10.1515/mt-2023-0201
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/mt-2023-0201/html
dc.identifier.urihttps://hdl.handle.net/11452/46337
dc.identifier.volume65
dc.identifier.wos001085216000001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter de Gruyter Gmbh
dc.relation.bapFGA-2023-1440
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMarine predators algorithm
dc.subjectSalp swarm algorithm
dc.subjectGrey wolf optimizer
dc.subjectRobust design
dc.subjectTopology optimization
dc.subjectGenetic algorithm
dc.subjectStructural design
dc.subjectHybrid approach
dc.subjectCrashworthiness
dc.subjectParameters
dc.subjectComponent design
dc.subjectSeat bracket
dc.subjectArtificial neural networks
dc.subjectOptimization algorithms
dc.subjectMaterials science
dc.titleOptimum design of a seat bracket using artificial neural networks and dandelion optimization algorithm
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscoverye544f464-5e4a-4fb5-a77a-957577c981c6

Files

Collections