Publication: (κ, μ, υ = const.)-contact metric manifolds with ξ(IM)=0
dc.contributor.author | ||
dc.contributor.buuauthor | Murathan, Cengizhan | |
dc.contributor.buuauthor | MURATHAN, CENGİZHAN | |
dc.contributor.buuauthor | Erken, İ. Küpeli | |
dc.contributor.department | Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Matematik Anabilim Dalı. | |
dc.contributor.researcherid | ABH-3658-2020 | |
dc.date.accessioned | 2024-10-18T05:56:02Z | |
dc.date.available | 2024-10-18T05:56:02Z | |
dc.date.issued | 2014-03-01 | |
dc.description.abstract | We give a local classification of (kappa, mu, upsilon = const.)-contact metric manifold (M, phi, xi, eta, g) with kappa < 1 which satisfies the condition" the Boeckx invariant function I-M = 1-mu/2/root 1-kappa is constant along the integral curves of the characteristic vector field xi". | |
dc.identifier.doi | 10.1007/s13366-013-0148-4 | |
dc.identifier.endpage | 58 | |
dc.identifier.issn | 0138-4821 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 43 | |
dc.identifier.uri | https://doi.org/10.1007/s13366-013-0148-4 | |
dc.identifier.uri | https://hdl.handle.net/11452/46704 | |
dc.identifier.volume | 55 | |
dc.identifier.wos | 000441631400004 | |
dc.indexed.wos | WOS.ESCI | |
dc.language.iso | en | |
dc.publisher | Springer Heidelberg | |
dc.relation.journal | Beitrage Zur Algebra Und Geometrie-contributions To Algebra And Geometry | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Contact metric manifold | |
dc.subject | (kappa, mu, upsilon)-contact metric manifold | |
dc.subject | Nullity distributions | |
dc.subject | Science & technology | |
dc.subject | Physical sciences | |
dc.subject | Mathematics | |
dc.title | (κ, μ, υ = const.)-contact metric manifolds with ξ(IM)=0 | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 84bde251-4d9e-4e01-bf1e-600b240a5d09 | |
relation.isAuthorOfPublication.latestForDiscovery | 84bde251-4d9e-4e01-bf1e-600b240a5d09 |