Publication:
Aircraft control parameter estimation using self-adaptive teaching-learning-based optimization with an acceptance probability

dc.contributor.authorKanokmedhakul, Yodsadej
dc.contributor.authorPanagant, Natee
dc.contributor.authorBureerat, Sujin
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2024-06-26T07:16:42Z
dc.date.available2024-06-26T07:16:42Z
dc.date.issued2021-12-01
dc.description.abstractThis work presents a metaheuristic (MH) termed, self-adaptive teaching-learning-based optimization, with an acceptance probability for aircraft parameter estimation. An inverse optimization problem is presented for aircraft longitudinal parameter estimation. The problem is posed to find longitudinal aerodynamic parameters by minimising errors between real flight data and those calculated from the dynamic equations. The HANSA-3 aircraft is used for numerical validation. Several established MHs along with the proposed algorithm are used to solve the proposed optimization problem, while their search performance is investigated compared to a conventional output error method (OEM). The results show that the proposed algorithm is the best performer in terms of search convergence and consistency. This work is said to be the baseline for purely applying MHs for aircraft parameter estimation.
dc.description.sponsorshipThailand Research Fund (TRF) - PHD/0153/2561
dc.description.sponsorshipNational Research Council of Thailand (NRCT) - NRCT5-RSA63003-06
dc.identifier.doi10.1155/2021/4740995
dc.identifier.eissn1687-5273
dc.identifier.issn1687-5265
dc.identifier.urihttps://doi.org/10.1155/2021/4740995
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1155/2021/4740995
dc.identifier.urihttps://hdl.handle.net/11452/42405
dc.identifier.volume2021
dc.identifier.wos000797219500005
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherHindawi
dc.relation.journalComputational Intelligence and Neuroscience
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDifferential evolution
dc.subjectAlgorithm
dc.subjectModels
dc.subjectMathematical & computational biology
dc.subjectNeurosciences & neurology
dc.titleAircraft control parameter estimation using self-adaptive teaching-learning-based optimization with an acceptance probability
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yıldız_vd_2021_2.pdf
Size:
1.71 MB
Format:
Adobe Portable Document Format

Collections