Publication:
On the lie symmetry analysis, analytic series solutions, and conservation laws of the time fractional belousov-zhabotinskii system

dc.contributor.authorSan, Sait
dc.contributor.buuauthorYaşar, Emrullah
dc.contributor.buuauthorYAŞAR, EMRULLAH
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Matematik Anabilim Dalı.
dc.contributor.orcid0000-0003-4732-5753
dc.date.accessioned2024-11-04T12:48:16Z
dc.date.available2024-11-04T12:48:16Z
dc.date.issued2022-06-03
dc.description.abstractIn this study, a reaction mechanism proposed by Belousov and Zhabotinskii, which corresponds to many physical phenomena, from the complex wave behavior of the heart and various organs in our body to the formation of biological models that cause embryonic developments, was examined. We considered the derivative with the time evolution as the Riemann-Liouville derivative operator. Lie symmetry generators corresponding to the transformation groups in which our model remains invariant were constructed. The power series solution was systematically designed, including the convergence analysis of this system. Besides, conservation laws of the model were created for the 0 < alpha < 1 states of the a fraction order.
dc.identifier.doi10.1007/s11071-022-07549-6
dc.identifier.endpage3008
dc.identifier.issn0924-090X
dc.identifier.issue4
dc.identifier.startpage2997
dc.identifier.urihttps://doi.org/10.1007/s11071-022-07549-6
dc.identifier.urihttps://hdl.handle.net/11452/47405
dc.identifier.volume109
dc.identifier.wos000805707900001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer
dc.relation.journalNonlinear Dynamics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectNonlinear self-adjointness
dc.subjectTraveling-wave solutions
dc.subjectModel
dc.subjectFractional conservation laws
dc.subjectLie group analysis
dc.subjectTime fractional b-z system
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectEngineering, mechanical
dc.subjectMechanics
dc.subjectEngineering
dc.titleOn the lie symmetry analysis, analytic series solutions, and conservation laws of the time fractional belousov-zhabotinskii system
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicationa5ff66ef-0c87-4d77-a467-e3150f51624c
relation.isAuthorOfPublication.latestForDiscoverya5ff66ef-0c87-4d77-a467-e3150f51624c

Files

Collections