Publication: Fault diagnosis with deep learning for standard and asymmetric involute spur gears
No Thumbnail Available
Date
2021-01-01
Authors
Karpat, Fatih
Dirik, Ahmet Emir
Kalay, Onur Can
Korcuklu, Burak
Authors
Yuce, Celalettin
Dogan, Oguz
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Soc Mechanical Engineers
Abstract
Gears are critical power transmission elements used in various industries. However, varying working speeds and sudden load changes may cause root cracks, pitting, or missing tooth failures. The asymmetric tooth profile offers higher load-carrying capacity, long life, and the ability to lessen vibration than the standard (symmefric) profile spur gears. Gearbox faults that cannot be detected early may lead the entire system to stop or serious damage to the machine. In this regard, Deep Learning (DL) algorithms have started to be utilized for gear early fault diagnosis. This study aims to determine the root crack for both symmefric and asymmefric involute spur gears with a DL-based approach. To this end, single tooth stiffness of the gears was obtained with ANSYS software for healthy and cracked gears (50-100%), and then the time-varying mesh stiffness (TVMS) was calculated. A six-degrees-of-freedom dynamic model was developed by deriving the equations of motion of a single-stage spur gear mechanism. The vibration responses were collected for the healthy state, 50% and 100% crack degrees for both symmefric and asymmefric tooth profiles. Furthermore, the white Gaussian noise was added to the vibration data to complicate the early crack diagnosis task. The main contribution of this paper is that it adapts the DL-based approaches used for early fault diagnosis in standard profile involute spur gears to the asymmefric tooth concept for the first time. The proposed method can eliminate the need for large amounts of training data from costly physical experiments. Therefore, maintenance strategies can be improved by early crack detection.
Description
Bu çalışma, 01-05 Kasım 2021 tarihleri arasında düzenlenen ASME International Mechanical Engineering Congress and Exposition (IMECE)’da bildiri olarak sunulmuştur.
Keywords
Crack detection, System, Gear design, Deep learning, Early fault diagnosis, Asymmetric spur gear, Science & technology, Technology, Engineering, multidisciplinary, Engineering