Publication: A subclass of bi-univalent functions based on the faber polynomial expansions and the fibonacci numbers
dc.contributor.author | Altınkaya, Şahsene | |
dc.contributor.author | Yalçın, Sibel | |
dc.contributor.author | Çakmak, Serkan | |
dc.contributor.buuauthor | ALTINKAYA, ŞAHSENE | |
dc.contributor.buuauthor | YALÇIN TOKGÖZ, SİBEL | |
dc.contributor.buuauthor | Çakmak, Serkan | |
dc.contributor.department | Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü | |
dc.contributor.orcid | 0000-0002-7950-8450 | |
dc.contributor.orcid | 0000-0002-0243-8263 | |
dc.contributor.orcid | 0000-0003-0368-7672 | |
dc.contributor.researcherid | AAE-9745-2020 | |
dc.contributor.researcherid | ABC-6175-2020 | |
dc.contributor.researcherid | GZG-2072-2022 | |
dc.contributor.researcherid | AAA-8330-2021 | |
dc.date.accessioned | 2024-07-17T05:25:59Z | |
dc.date.available | 2024-07-17T05:25:59Z | |
dc.date.issued | 2019-02-01 | |
dc.description.abstract | In this investigation, by using the Komatu integral operator, we introduce the new class ( pound eta,rho)(Sigma,t)((rho) over tilde of bi-univalent functions based on the rule of subordination. Moreover, we use the Faber polynomial expansions and Fibonacci numbers to derive bounds for the general coefficient vertical bar a(n)vertical bar of the bi-univalent function class. | |
dc.identifier.doi | 10.3390/math7020160 | |
dc.identifier.eissn | 2227-7390 | |
dc.identifier.issue | 2 | |
dc.identifier.uri | https://doi.org/10.3390/math7020160 | |
dc.identifier.uri | https://www.mdpi.com/2227-7390/7/2/160 | |
dc.identifier.uri | https://pdfs.semanticscholar.org/1717/25ac3c6a8df6c7ad6f29a5e23aa9768dc56c.pdf | |
dc.identifier.uri | https://hdl.handle.net/11452/43296 | |
dc.identifier.volume | 7 | |
dc.identifier.wos | 000460802500050 | |
dc.indexed.wos | WOS.SCI | |
dc.language.iso | en | |
dc.publisher | Mdpi | |
dc.relation.journal | Mathematics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Coefficient | |
dc.subject | Bi-univalent functions | |
dc.subject | Subordination | |
dc.subject | Faber polynomials | |
dc.subject | Fibonacci numbers | |
dc.subject | Komatu integral operator | |
dc.subject | Science & technology | |
dc.subject | Physical sciences | |
dc.subject | Mathematics | |
dc.title | A subclass of bi-univalent functions based on the faber polynomial expansions and the fibonacci numbers | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1ae371d0-9aed-4e2f-9f59-86ae8f6395b5 | |
relation.isAuthorOfPublication | 810440e4-c926-4301-a0cc-b455e6d6e960 | |
relation.isAuthorOfPublication.latestForDiscovery | 1ae371d0-9aed-4e2f-9f59-86ae8f6395b5 |
Files
Original bundle
1 - 1 of 1