Publication: A modular approach to the generalized ramanujan-nagell equation
dc.contributor.author | Le, Maohua | |
dc.contributor.buuauthor | Mutlu, Elif Kizildere | |
dc.contributor.buuauthor | Soydan, Gokhan | |
dc.contributor.buuauthor | SOYDAN, GÖKHAN | |
dc.contributor.department | Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Matematik Bölümü. | |
dc.contributor.orcid | 0000-0002-7651-7001 | |
dc.contributor.researcherid | M-9459-2017 | |
dc.date.accessioned | 2024-09-17T07:28:19Z | |
dc.date.available | 2024-09-17T07:28:19Z | |
dc.date.issued | 2022-08-20 | |
dc.description.abstract | Let k be a positive integer. In this paper, using the modular approach, we prove that if k & EQUIV; 0 (mod 4), 30 < k < 724 and 2k -1 is an odd prime power, then under the GRH, the equation x2 + (2k -1)y = kz has only one positive integer solution (x, y, z) = (k - 1, 1, 2). The above results solve some difficult cases of Terai's conjecture concerning this equation.(c) 2022 Royal Dutch Mathematical Society (KWG). | |
dc.identifier.doi | 10.1016/j.indag.2022.04.005 | |
dc.identifier.endpage | 1000 | |
dc.identifier.issn | 0019-3577 | |
dc.identifier.issue | 5 | |
dc.identifier.startpage | 992 | |
dc.identifier.uri | https://doi.org/10.1016/j.indag.2022.04.005 | |
dc.identifier.uri | https://hdl.handle.net/11452/44818 | |
dc.identifier.volume | 33 | |
dc.identifier.wos | 000849224700006 | |
dc.indexed.wos | WOS.SCI | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.bap | F-2020/8 | |
dc.relation.journal | Indagationes Mathematicae-new Series | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Diophantine equations | |
dc.subject | Points | |
dc.subject | Polynomial-exponential diophantine equation | |
dc.subject | Elliptic curve | |
dc.subject | S-integral point | |
dc.subject | Modular approach | |
dc.subject | Science & technology | |
dc.subject | Physical sciences | |
dc.subject | Mathematics | |
dc.title | A modular approach to the generalized ramanujan-nagell equation | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 356f7af9-3f0f-4c82-8733-d98627634647 | |
relation.isAuthorOfPublication.latestForDiscovery | 356f7af9-3f0f-4c82-8733-d98627634647 |
Files
Original bundle
1 - 1 of 1