Publication:
Thermohydraulic performance optimization of automobile radiators using statistical approaches

dc.contributor.authorCanbolat, Ahmet Serhan
dc.contributor.authorBademlioğlu, Ali Hüsnü
dc.contributor.authorKaynaklı, Ömer
dc.contributor.buuauthorCANBOLAT, AHMET SERHAN
dc.contributor.buuauthorKAYNAKLI, ÖMER
dc.contributor.departmentBursa Uludağ Üniversitesi/Gemlik Asım Kocabıyık Meslek Yüksekokulu/Hibrit ve Elektrikli Araç Teknolojisi Programı.
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.
dc.contributor.researcheridHPH-3328-2023
dc.contributor.researcheridDBD-5807-2022
dc.date.accessioned2024-09-23T10:51:49Z
dc.date.available2024-09-23T10:51:49Z
dc.date.issued2022-05-01
dc.description.abstractAutomobile radiator which is one of the vital components used for engine cooling in vehicles is expected to provide higher thermal performance without changing the exterior dimensions of the radiator with the development of engine technology. This situation necessitates changes in both design and operating parameters in the currently used radiator. In the present study, all fundamental parameters affecting the thermal and hydraulic performance of an automobile radiator are evaluated and optimized with statistical methods. Optimization study is carried out using Taguchi and ANOVA methods for two specified objective functions (heat transfer and pressure drop). The order of importance and impact rates for each design and operating parameter, the best and worst working conditions in terms of both target functions are determined. Air velocity, air inlet temperature, coolant inlet temperature, and fin pitch are found to be the most effective parameters on the heat transfer with a contribution ratio of 88%. The best and worst working conditions are obtained for the heat transfer and under these working conditions, they are calculated as 43.68 kW and 1.63 kW, respectively. When the system is examined in terms of the pressure drop, the results show that the coolant flowrate and tube height have a great impact with a contribution ratio of 67.04% and 32.06%, respectively. Lastly, the maximum and minimum pressure drop within the studied operating condition range is determined as 20.68 kPa and 0.12 kPa, respectively.
dc.identifier.doi10.1115/1.4052853
dc.identifier.issn1948-5085
dc.identifier.issue5
dc.identifier.urihttps://doi.org/10.1115/1.4052853
dc.identifier.urihttps://asmedigitalcollection.asme.org/thermalscienceapplication/article-abstract/14/5/051014/1122926/Thermohydraulic-Performance-Optimization-of?redirectedFrom=fulltext
dc.identifier.urihttps://hdl.handle.net/11452/45043
dc.identifier.volume14
dc.identifier.wos000777756000008
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherAsme
dc.relation.journalJournal of Thermal Science and Engineering Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHeat-transfer coefficient
dc.subjectGrey relational analysis
dc.subjectDesign parameters
dc.subjectCar radiator
dc.subjectTransfer augmentation
dc.subjectTransfer enhancement
dc.subjectForced-convection
dc.subjectTaguchi approach
dc.subjectTube
dc.subjectExchanger
dc.subjectAutomobile radiator
dc.subjectHeat exchanger
dc.subjectTaguchi method
dc.subjectAnova
dc.subjectHeat transfer
dc.subjectPressure drop
dc.subjectHeat transfer enhancement
dc.subjectThermal systems
dc.subjectThermodynamics
dc.subjectEngineering
dc.titleThermohydraulic performance optimization of automobile radiators using statistical approaches
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication141ef710-f81e-4eef-8f2a-720d18a92185
relation.isAuthorOfPublication403cb5d9-5eeb-4c66-a8cd-02c88fa3b7b7
relation.isAuthorOfPublication.latestForDiscovery141ef710-f81e-4eef-8f2a-720d18a92185

Files

Collections