Publication:
Synthesis and characterization of graphene nanoplatelet-La₀.₇Ca₀.₃MnO₃ composites

dc.contributor.authorKüçük, İlker
dc.contributor.authorTekgül, Atakan
dc.contributor.authorSarlar, Kağan
dc.contributor.authorCivan, Ersin
dc.contributor.authorKüçük, Nil
dc.contributor.authorMacan, Barış
dc.contributor.buuauthorKÜÇÜK, İLKER
dc.contributor.buuauthorTekgul, Atakan
dc.contributor.buuauthorSarlar, Kağan
dc.contributor.buuauthorKÜÇÜK, NİL
dc.contributor.buuauthorMacan, Barış
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentFizik Bölümü
dc.contributor.orcid0000-0001-6737-3838
dc.contributor.orcid0000-0002-8871-2357
dc.contributor.orcid0000-0002-9193-4591
dc.contributor.researcheridAAI-6808-2021
dc.contributor.researcheridP-2124-2016
dc.contributor.researcheridB-8159-2016
dc.contributor.researcheridGXN-2736-2022
dc.contributor.researcheridCCH-1761-2022
dc.contributor.researcheridDGC-7162-2022
dc.date.accessioned2024-07-10T11:56:47Z
dc.date.available2024-07-10T11:56:47Z
dc.date.issued2019-07-11
dc.description.abstractLa₀.₇Ca₀.₃MnO₃ perovskite and its composites with graphene nanoplatelet (GNP) were prepared using a wet chemical method. The structural, magnetic and magnetocaloric properties of La₀.₇Ca₀.3MnO₃: GNP composites were investigated to determine the effect of GNPs. The results of XRD analysis show that the synthesised powders can be almost indexed to pure phase orthorhombic La₀.₇Ca₀.₃MnO₃. The magnetic measurements demonstrate that 0.7 and 1% GNP amounts cause an increase in the Curie temperature (T-C), and for larger amounts of GNP, the T-C monotonically decreases, except for the sample with 10% GNP. The results obtained from the Arrott plots show that the magnetic phase transition of the samples transforms from the first to second order with increasing GNP amount. The changes in the magnetocaloric properties are interpreted in terms of perovskite phase formations via structural analysis. The amounts of graphene nanoplatelets in the oxide powders are correlated with the observed magnetocaloric properties. The best magnetocaloric performance with the maximum magnetic entropy change of 3.99 Jkg(-1)K(-1) and refrigeration capacity of 90 Jkg(-1) was obtained at a 2 T magnetic field.
dc.identifier.doi10.1080/14786435.2019.1639838
dc.identifier.endpage2750
dc.identifier.issn1478-6435
dc.identifier.issue21
dc.identifier.startpage2736
dc.identifier.urihttps://doi.org/10.1080/14786435.2019.1639838
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/14786435.2019.1639838
dc.identifier.urihttps://hdl.handle.net/11452/43134
dc.identifier.volume99
dc.identifier.wos000475044700001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherTaylor & Francis
dc.relation.bapOUAP(F)-2018/4
dc.relation.journalPhilosophical Magazine
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMagnetocaloric properties
dc.subjectMagnetoresistance properties
dc.subjectManganites
dc.subjectTemperature
dc.subjectCrystal
dc.subjectGraphene nanoplatelet
dc.subjectMagnetic entropy
dc.subjectMagnetic oxides
dc.subjectMagnetocaloric effect
dc.subjectMaterials science
dc.subjectMetallurgy & metallurgical engineering
dc.subjectPhysics
dc.titleSynthesis and characterization of graphene nanoplatelet-La₀.₇Ca₀.₃MnO₃ composites
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Fizik Bölümü
relation.isAuthorOfPublicationa349a06c-7ca6-4a27-8708-8157e5962651
relation.isAuthorOfPublication506ab7b8-369f-4f14-b4e5-af0d868a44d0
relation.isAuthorOfPublication.latestForDiscoverya349a06c-7ca6-4a27-8708-8157e5962651

Files

Collections