Publication: On the spectral radius of bipartite graphs which are nearly complete
dc.contributor.author | Das, Kinkar Chandra | |
dc.contributor.author | Maden, Ayşe Dilek | |
dc.contributor.author | Çevik, Ahmet Sinan | |
dc.contributor.buuauthor | Cangül, İsmail Naci | |
dc.contributor.department | Fen Edebiyat Fakültesi | |
dc.contributor.department | Matematik Ana Bilim Dalı | |
dc.contributor.orcid | 0000-0002-0700-5774 | |
dc.contributor.orcid | 0000-0002-0700-5774 | |
dc.contributor.researcherid | J-3505-2017 | |
dc.contributor.researcherid | ABA-6206-2020 | |
dc.contributor.scopusid | 57189022403 | |
dc.date.accessioned | 2023-05-30T10:44:45Z | |
dc.date.available | 2023-05-30T10:44:45Z | |
dc.date.issued | 2013-12 | |
dc.description.abstract | For p, q, r, s, t is an element of Z(+) with rt <= p and st <= q, let G = G(p, q; r, s; t) be the bipartite graph with partite sets U = {u(1), ..., u(p)} and V = {v(1),..., v(q)} such that any two edges u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1) r + 1 <= i <= kr and (k - 1) s + 1 <= j <= ks. Under these circumstances, Chen et al. (Linear Algebra Appl. 432: 606-614, 2010) presented the following conjecture: Assume that p <= q, k < p, vertical bar U vertical bar = p, vertical bar V vertical bar = q and vertical bar E(G)vertical bar = pq - k. Then whether it is true that lambda(1)(G) <= lambda(1)(G(p, q; k, 1; 1)) = root pq - k + root p(2)q(2) - 6pqk + 4pk + 4qk(2) - 3k(2)/2. In this paper, we prove this conjecture for the range min(vh is an element of V){deg v(h)} <= left perpendicular p-1/2right perpendicular. | |
dc.description.sponsorship | Selçuk Üniversitesi | |
dc.description.sponsorship | Ministry of Education & Human Resources Development (MOEHRD), Republic of Korea | |
dc.identifier.citation | Das, K. C. vd. (2013). “On the spectral radius of bipartite graphs which are nearly complete”. Journal of Inequalities and Applications, 2013. | |
dc.identifier.issn | 1029-242X | |
dc.identifier.scopus | 2-s2.0-84894322267 | |
dc.identifier.uri | https://doi.org/10.1186/1029-242X-2013-121 | |
dc.identifier.uri | https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-121 | |
dc.identifier.uri | http://hdl.handle.net/11452/32879 | |
dc.identifier.volume | 2013 | |
dc.identifier.wos | 000317992400001 | |
dc.indexed.wos | SCIE | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.bap | BAP | |
dc.relation.collaboration | Yurt dışı | |
dc.relation.collaboration | Yurt içi | |
dc.relation.journal | Journal of Inequalities and Applications | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.subject | Bipartite graph | |
dc.subject | Adjacency matrix | |
dc.subject | Spectral radius | |
dc.subject | Eigenvalues | |
dc.subject | Conjectures | |
dc.subject | Bounds | |
dc.subject | Proof | |
dc.subject.scopus | Signless Laplacian; Eigenvalue; Signed Graph | |
dc.subject.wos | Mathematics, applied | |
dc.subject.wos | Mathematics | |
dc.title | On the spectral radius of bipartite graphs which are nearly complete | |
dc.type | Article | |
dc.wos.quartile | Q2 | |
dspace.entity.type | Publication | |
local.contributor.department | Fen Edebiyat Fakültesi/Matematik Ana Bilim Dalı | |
local.indexed.at | Scopus | |
local.indexed.at | WOS |