Publication:
On the spectral radius of bipartite graphs which are nearly complete

dc.contributor.authorDas, Kinkar Chandra
dc.contributor.authorMaden, Ayşe Dilek
dc.contributor.authorÇevik, Ahmet Sinan
dc.contributor.buuauthorCangül, İsmail Naci
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.researcheridJ-3505-2017
dc.contributor.researcheridABA-6206-2020
dc.contributor.scopusid57189022403
dc.date.accessioned2023-05-30T10:44:45Z
dc.date.available2023-05-30T10:44:45Z
dc.date.issued2013-12
dc.description.abstractFor p, q, r, s, t is an element of Z(+) with rt <= p and st <= q, let G = G(p, q; r, s; t) be the bipartite graph with partite sets U = {u(1), ..., u(p)} and V = {v(1),..., v(q)} such that any two edges u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1) r + 1 <= i <= kr and (k - 1) s + 1 <= j <= ks. Under these circumstances, Chen et al. (Linear Algebra Appl. 432: 606-614, 2010) presented the following conjecture: Assume that p <= q, k < p, vertical bar U vertical bar = p, vertical bar V vertical bar = q and vertical bar E(G)vertical bar = pq - k. Then whether it is true that lambda(1)(G) <= lambda(1)(G(p, q; k, 1; 1)) = root pq - k + root p(2)q(2) - 6pqk + 4pk + 4qk(2) - 3k(2)/2. In this paper, we prove this conjecture for the range min(vh is an element of V){deg v(h)} <= left perpendicular p-1/2right perpendicular.
dc.description.sponsorshipSelçuk Üniversitesi
dc.description.sponsorshipMinistry of Education & Human Resources Development (MOEHRD), Republic of Korea
dc.identifier.citationDas, K. C. vd. (2013). “On the spectral radius of bipartite graphs which are nearly complete”. Journal of Inequalities and Applications, 2013.
dc.identifier.issn1029-242X
dc.identifier.scopus2-s2.0-84894322267
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2013-121
dc.identifier.urihttps://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-121
dc.identifier.urihttp://hdl.handle.net/11452/32879
dc.identifier.volume2013
dc.identifier.wos000317992400001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.bapBAP
dc.relation.collaborationYurt dışı
dc.relation.collaborationYurt içi
dc.relation.journalJournal of Inequalities and Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.subjectBipartite graph
dc.subjectAdjacency matrix
dc.subjectSpectral radius
dc.subjectEigenvalues
dc.subjectConjectures
dc.subjectBounds
dc.subjectProof
dc.subject.scopusSignless Laplacian; Eigenvalue; Signed Graph
dc.subject.wosMathematics, applied
dc.subject.wosMathematics
dc.titleOn the spectral radius of bipartite graphs which are nearly complete
dc.typeArticle
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Ana Bilim Dalı
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Cangül_vd_2013.pdf
Size:
227.73 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: