Publication:
Generalization of hadamard-type trapezoid inequalities for fractional integral operators

dc.contributor.authorBayraktar, Bahtiyar
dc.contributor.authorÖzdemir, Muhamet Emin
dc.contributor.buuauthorBAYRAKTAR, BAHTİYAR
dc.contributor.buuauthorÖZDEMİR, MUHAMET EMİN
dc.contributor.orcid0000-0001-7594-8291
dc.contributor.researcheridABI-7823-2020
dc.contributor.researcheridAAH-1091-2021
dc.date.accessioned2024-06-06T06:39:18Z
dc.date.available2024-06-06T06:39:18Z
dc.date.issued2021-03-01
dc.description.abstractThe role of convexity theory in applied problems, especially in optimization problems, is well known. The integral Hermite-Hadamard inequality has a special place in this theory since it provides an upper bound for the mean value of a function. In solving applied problems from different fields of science and technology, along with the classical integro-differential calculus, fractional calculus plays an important role. A lot of research is devoted to obtaining an upper bound in the Hermite-Hadamard inequality using operators of fractional calculus.The article formulates and proves the identity with the participation of the fractional integration operator. Based on this identity, new generalized Hadamard-type integral inequalities are obtained for functions for which the second derivatives are convex and take values at intermediate points of the integration interval. These results are obtained using the convexity property of a function and two classical integral inequalities, the Hermite-Hadamard integral inequality and its other form, the power mean inequality. It is shown that the upper limit of the absolute error of inequality decreases in approximately n(2) times, where.. is the number of intermediate points. In a particular case, the obtained estimates are consistent with known estimates in the literature. The results obtained in the article can be used in further researches in the integro-differential fractional calculus.
dc.identifier.doi10.13108/2021-13-1-119
dc.identifier.endpage130
dc.identifier.issn2074-1863
dc.identifier.issue1
dc.identifier.startpage119
dc.identifier.urihttps://doi.org/10.13108/2021-13-1-119
dc.identifier.urihttps://matem.anrb.ru/en/article?art_id=737
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829528/
dc.identifier.urihttps://hdl.handle.net/11452/41797
dc.identifier.volume13
dc.identifier.wos000678390800011
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherInst Mathematics Computer Center Russia
dc.relation.journalUfa Mathematical Journal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectConvexity
dc.subjectHermite-hadamard inequality
dc.subjectHolder inequality
dc.subjectPower-mean inequality
dc.subjectRiemann-liouville fractional integrals
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleGeneralization of hadamard-type trapezoid inequalities for fractional integral operators
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication4d1a94ce-504e-499e-91e8-689abbf37041
relation.isAuthorOfPublicatione63e99f5-cafd-431b-85f9-e8875c3fddf6
relation.isAuthorOfPublication.latestForDiscovery4d1a94ce-504e-499e-91e8-689abbf37041

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bayraktar_ve_Özdemir_2021.pdf
Size:
427.64 KB
Format:
Adobe Portable Document Format

Collections