Publication:
Surface pencils in euclidean 4-space e 4

dc.contributor.buuauthorBulca, Betül
dc.contributor.buuauthorBULCA SOKUR, BETÜL
dc.contributor.buuauthorArslan, Kadri
dc.contributor.buuauthorARSLAN, KADRİ
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Matematik Anabilim Dalı.
dc.contributor.orcid0000-0001-5861-0184
dc.contributor.orcid0000-0002-1440-7050
dc.contributor.researcheridAAG-8775-2021
dc.contributor.researcheridAAG-7693-2021
dc.date.accessioned2024-11-19T13:01:10Z
dc.date.available2024-11-19T13:01:10Z
dc.date.issued2016-12-01
dc.description.abstractIn this paper, we study the problem of constructing a family of surfaces (surface pencils) from a given curve in 4-dimensional Euclidean space E-4. We have shown that the generalized rotation surfaces in E-4 are the special type of surface pencils. Further, the curvature properties of these surfaces are investigated. Finally, we give some examples of flat surface pencils in E-4.
dc.identifier.doi10.1142/S1793557116500741
dc.identifier.issn1793-5571
dc.identifier.issue4
dc.identifier.urihttps://doi.org/10.1142/S1793557116500741
dc.identifier.urihttps://hdl.handle.net/11452/48129
dc.identifier.volume9
dc.identifier.wos000389311800005
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.journalAsian-european Journal Of Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectParametric representation
dc.subjectCommon line
dc.subjectSurface pencil
dc.subjectMarching-scale function
dc.subjectGaussian curvature
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleSurface pencils in euclidean 4-space e 4
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication45c31521-1d02-466d-902b-10f1e471b1d8
relation.isAuthorOfPublication78a6d00b-f51c-4edc-9075-74a0f2803729
relation.isAuthorOfPublication.latestForDiscovery45c31521-1d02-466d-902b-10f1e471b1d8

Files

Collections