Publication: A novel hybrid flow direction optimizer-dynamic oppositional based learning algorithm for solving complex constrained mechanical design problems
dc.contributor.author | Yıldız, Betül Sultan | |
dc.contributor.author | Pholdee, Nantiwat | |
dc.contributor.author | Mehta, Pranav | |
dc.contributor.author | Sait, Sadiq M. | |
dc.contributor.author | Kumar, Sumit | |
dc.contributor.author | Bureerat, Sujin | |
dc.contributor.author | Yıldız, Ali Rıza | |
dc.contributor.buuauthor | YILDIZ, BETÜL SULTAN | |
dc.contributor.buuauthor | YILDIZ, ALİ RIZA | |
dc.contributor.department | Makine Mühendisliği Bölümü | |
dc.contributor.researcherid | AAL-9234-2020 | |
dc.contributor.researcherid | F-7426-2011 | |
dc.date.accessioned | 2024-10-16T11:32:16Z | |
dc.date.available | 2024-10-16T11:32:16Z | |
dc.date.issued | 2023-01-27 | |
dc.description.abstract | In this present work, mechanical engineering optimization problems are solved by employing a novel optimizer (HFDO-DOBL) based on a physics-based flow direction optimizer (FDO) and dynamic oppositional-based learning. Five real-world engineering problems, viz. planetary gear train, hydrostatic thrust bearing, robot gripper, rolling bearing, and multiple disc clutch brake, are considered. The computational results obtained by HFDO-DOBL are compared with several newly proposed algorithms. The statistical analysis demonstrates the HFDO-DOBL dominance in finding optimal solutions relatively and competitiveness in solving constraint design optimization problems. | |
dc.identifier.doi | 10.1515/mt-2022-0183 | |
dc.identifier.eissn | 2195-8572 | |
dc.identifier.endpage | 143 | |
dc.identifier.issn | 0025-5300 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 134 | |
dc.identifier.uri | https://doi.org/10.1515/mt-2022-0183 | |
dc.identifier.uri | https://www.degruyter.com/document/doi/10.1515/mt-2022-0183/html | |
dc.identifier.uri | https://hdl.handle.net/11452/46538 | |
dc.identifier.volume | 65 | |
dc.identifier.wos | 000909572000013 | |
dc.indexed.wos | WOS.SCI | |
dc.language.iso | en | |
dc.publisher | Walter de Gruyter Gmbh | |
dc.relation.journal | Materials Testing | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Engineering optimization | |
dc.subject | Crashworthiness | |
dc.subject | Dynamic oppositional based learning | |
dc.subject | Flow direction algorithm | |
dc.subject | Hydrostatic thrust bearing | |
dc.subject | Mechanical design | |
dc.subject | Planetary gear train | |
dc.subject | Robot gripper | |
dc.subject | Science & technology | |
dc.subject | Technology | |
dc.subject | Materials science, characterization & testing | |
dc.subject | Materials science | |
dc.title | A novel hybrid flow direction optimizer-dynamic oppositional based learning algorithm for solving complex constrained mechanical design problems | |
dc.type | Article | |
dspace.entity.type | Publication | |
local.contributor.department | Makine Mühendisliği Bölümü | |
relation.isAuthorOfPublication | e544f464-5e4a-4fb5-a77a-957577c981c6 | |
relation.isAuthorOfPublication | 89fd2b17-cb52-4f92-938d-a741587a848d | |
relation.isAuthorOfPublication.latestForDiscovery | e544f464-5e4a-4fb5-a77a-957577c981c6 |