Publication:
A novel generalized normal distribution optimizer with elite oppositional based learning for optimization of mechanical engineering problems

dc.contributor.authorMehta, Pranav
dc.contributor.authorYıldız, Betuel Sultan
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorKumar, Sumit
dc.contributor.authorRiza Yıldız, Ali
dc.contributor.authorSait, Sadiq M. M.
dc.contributor.authorBureerat, Sujin
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü
dc.contributor.researcheridF-7426-2011
dc.contributor.researcheridAAH-6495-2019
dc.date.accessioned2024-10-17T05:09:35Z
dc.date.available2024-10-17T05:09:35Z
dc.date.issued2023-02-23
dc.description.abstractOptimization of engineering discipline problems are quite a challenging task as they carry design parameters and various constraints. Metaheuristic algorithms can able to handle those complex problems and realize the global optimum solution for engineering problems. In this article, a novel generalized normal distribution algorithm that is integrated with elite oppositional-based learning (HGNDO-EOBL) is studied and employed to optimize the design of the eight benchmark engineering functions. Moreover, the statistical results obtained from the HGNDO-EOBL are collated with the data obtained from the well-established algorithms such as whale optimizer, salp swarm optimizer, LFD optimizer, manta ray foraging optimization algorithm, hunger games search algorithm, reptile search algorithm, and INFO algorithm. For each of the cases, a comparison of the statistical results suggests that HGNDO-EOBL is superior in terms of realizing the prominent values of the fitness function compared to established algorithms. Accordingly, the HGNDO-EOBL can be adopted for a wide range of engineering optimization problems.
dc.identifier.doi10.1515/mt-2022-0259
dc.identifier.eissn2195-8572
dc.identifier.endpage223
dc.identifier.issn0025-5300
dc.identifier.issue2
dc.identifier.startpage210
dc.identifier.urihttps://doi.org/10.1515/mt-2022-0259
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/mt-2022-0259/html
dc.identifier.urihttps://hdl.handle.net/11452/46580
dc.identifier.volume65
dc.identifier.wos000925852200006
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherGmbh
dc.relation.bapFGA-2022-1192
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDesign optimization
dc.subjectGenetic algorithm
dc.subjectSearch algorithm
dc.subjectTruss structures
dc.subjectRobust design
dc.subjectCrashworthiness
dc.subjectEngineering design problems
dc.subjectGeneralized normal distribution optimizer hgndo-eobl
dc.subjectMetaheursitcs algorithm
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleA novel generalized normal distribution optimizer with elite oppositional based learning for optimization of mechanical engineering problems
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscoverye544f464-5e4a-4fb5-a77a-957577c981c6

Files

Collections