Publication:
Prediction of maximum annual flood discharges using artificial neural network approaches

dc.contributor.authorAnılan, Tuğçe
dc.contributor.authorNacar, Sinan
dc.contributor.authorYüksek, Ömer
dc.contributor.buuauthorKankal, Murat
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Bölümü
dc.contributor.orcid0000-0003-0897-4742
dc.contributor.researcheridAAZ-6851-2020
dc.contributor.scopusid24471611900
dc.date.accessioned2022-12-08T11:12:31Z
dc.date.available2022-12-08T11:12:31Z
dc.date.issued2020-04-10
dc.description.abstractThe applicability of artificial neural network (ANN) approaches for estimation of maximum annual flows is investigated in the paper. The performance of three neural network models is compared: multi layer perceptron neural networks (MLP_NN), generalized feed forward neural networks (GFF_NN), and principal component analysis with neural networks (PCA_ NN). The proposed approaches were applied to 33 stream-gauging stations. It was found that the optimal 3-hidden layered PCA_NN method was more appropriate than the optimal MLP_NN and GFF_NN models for the estimation of maximum annual flows.
dc.identifier.citationAnılan, T. vd. (2020). "Prediction of maximum annual flood discharges using artificial neural network approaches". Gradevinar, 72(3), 215-224.
dc.identifier.endpage224
dc.identifier.issn0350-2465
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85084148753
dc.identifier.startpage215
dc.identifier.urihttps://doi.org/10.14256/JCE.2316.2018
dc.identifier.urihttp://www.casopis-gradjevinar.hr/archive/article/2316
dc.identifier.urihttp://hdl.handle.net/11452/29757
dc.identifier.volume72
dc.identifier.wos000534611200002
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherCroatian Society of Civil Engineers
dc.relation.collaborationYurt içi
dc.relation.journalGradevinar
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArtificial neural networks
dc.subjectPrincipal component analysis
dc.subjectMaximum annual flows
dc.subjectL-moments approach
dc.subjectFrequency-analysis
dc.subjectIndex-flood
dc.subjectFeedforward networks
dc.subjectStreamflow
dc.subjectBasin
dc.subjectClassification
dc.subjectRainfall
dc.subjectQuality
dc.subjectEngineering
dc.subject.scopusFlood Frequency; L-Moment; Catchment Area (Hydrology)
dc.subject.wosEngineering, civil
dc.titlePrediction of maximum annual flood discharges using artificial neural network approaches
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Kankal_vd_2020.pdf
Size:
340.22 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: