Publication:
On the number of solutions of the diophantine equation x2+2a . p b = y4

dc.contributor.authorZhu, Huilin
dc.contributor.authorLe, Maohua
dc.contributor.authorSoydan, Gökhan
dc.contributor.buuauthorSOYDAN, GÖKHAN
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.orcid0000-0002-6321-4132
dc.contributor.researcheridM-9459-2017
dc.date.accessioned2024-08-12T05:47:02Z
dc.date.available2024-08-12T05:47:02Z
dc.date.issued2015-01-01
dc.description.abstractLet p be a fixed odd prime. In this paper, we study the integer solutions (x, y, a, b) of the equation x(2) + 2(a).p(b) = y(4), gcd(x, y) = 1, x > 0, y > 0, a >= 0, b >= 0, and we derive upper bounds for the number of such solutions.
dc.description.sponsorshipFundamental Research Funds for the Central Universities
dc.description.sponsorshipScience Fund of Fujian Province - 2013J05019 - 2015J01024
dc.description.sponsorshipNational Natural Science Foundation of China (NSFC) - 10971184
dc.identifier.endpage263
dc.identifier.issn1582-3067
dc.identifier.issue3
dc.identifier.startpage255
dc.identifier.urihttps://hdl.handle.net/11452/43876
dc.identifier.volume17
dc.identifier.wos000363495600001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherEditura Acad Romane
dc.relation.bapF-2013/87
dc.relation.journalMathematical Reports
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak2219
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectExponential diophantine equation
dc.subjectLebesgue-nagell equation
dc.subjectClassification of solutions
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleOn the number of solutions of the diophantine equation x2+2a . p b = y4
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication356f7af9-3f0f-4c82-8733-d98627634647
relation.isAuthorOfPublication.latestForDiscovery356f7af9-3f0f-4c82-8733-d98627634647

Files

Collections