Publication: On the number of solutions of the diophantine equation x2+2a . p b = y4
dc.contributor.author | Zhu, Huilin | |
dc.contributor.author | Le, Maohua | |
dc.contributor.author | Soydan, Gökhan | |
dc.contributor.buuauthor | SOYDAN, GÖKHAN | |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü | |
dc.contributor.orcid | 0000-0002-6321-4132 | |
dc.contributor.researcherid | M-9459-2017 | |
dc.date.accessioned | 2024-08-12T05:47:02Z | |
dc.date.available | 2024-08-12T05:47:02Z | |
dc.date.issued | 2015-01-01 | |
dc.description.abstract | Let p be a fixed odd prime. In this paper, we study the integer solutions (x, y, a, b) of the equation x(2) + 2(a).p(b) = y(4), gcd(x, y) = 1, x > 0, y > 0, a >= 0, b >= 0, and we derive upper bounds for the number of such solutions. | |
dc.description.sponsorship | Fundamental Research Funds for the Central Universities | |
dc.description.sponsorship | Science Fund of Fujian Province - 2013J05019 - 2015J01024 | |
dc.description.sponsorship | National Natural Science Foundation of China (NSFC) - 10971184 | |
dc.identifier.endpage | 263 | |
dc.identifier.issn | 1582-3067 | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 255 | |
dc.identifier.uri | https://hdl.handle.net/11452/43876 | |
dc.identifier.volume | 17 | |
dc.identifier.wos | 000363495600001 | |
dc.indexed.wos | WOS.SCI | |
dc.language.iso | en | |
dc.publisher | Editura Acad Romane | |
dc.relation.bap | F-2013/87 | |
dc.relation.journal | Mathematical Reports | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.relation.tubitak | 2219 | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Exponential diophantine equation | |
dc.subject | Lebesgue-nagell equation | |
dc.subject | Classification of solutions | |
dc.subject | Science & technology | |
dc.subject | Physical sciences | |
dc.subject | Mathematics | |
dc.title | On the number of solutions of the diophantine equation x2+2a . p b = y4 | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 356f7af9-3f0f-4c82-8733-d98627634647 | |
relation.isAuthorOfPublication.latestForDiscovery | 356f7af9-3f0f-4c82-8733-d98627634647 |