Publication:
A machine learning approach for the estimation of photocatalytic activity of ald zno thin films on fabric substrates

dc.contributor.authorAkyıldız, Halil I.
dc.contributor.buuauthorYiğit, Enes
dc.contributor.buuauthorYİĞİT, ENES
dc.contributor.buuauthorIslam, Shafiqul
dc.contributor.buuauthorArat, Asife B.
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Bölümü.
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.
dc.contributor.orcid0000-0002-0960-5335
dc.contributor.orcid0000-0002-3290-1386
dc.contributor.researcheridJFJ-3503-2023
dc.contributor.researcheridAAQ-2513-2021
dc.date.accessioned2024-09-06T08:42:26Z
dc.date.available2024-09-06T08:42:26Z
dc.date.issued2023-11-03
dc.description.abstractResearch in the field of photocatalytic wastewater treatment is striving to enhance catalyst materials to achieve high-performance systems. A promising approach to this goal has been immobilizing photocatalytic materials on fibrous substrates via atomic layer deposition (ALD). Nevertheless, both the ALD process and the assessment of photocatalytic performance involve a multitude of parameters necessitating thorough investigation. In this study, we employ popular machine-learning algorithms, including Support Vector Regression (SVR) and Artificial Neural Networks (ANN), to predict the photocatalytic activity of ALD-coated textiles. The photocatalytic activity is evaluated through methylene blue and methyl orange degradation tests. Machine learning algorithms are tested and trained using the k-fold cross-validation technique. The findings demonstrate that the ANN and SVR methods utilized in this research can predict catalytic activity with mean absolute percentage errors (MAPE) of 2.35 and 3.25, respectively. This study illuminates that, within the defined range of process parameters, the photocatalytic activity of ALD-coated textiles can be precisely estimated with suitable machine-learning algorithms.
dc.identifier.doi10.1016/j.jphotochem.2023.115308
dc.identifier.issn1010-6030
dc.identifier.urihttps://doi.org/10.1016/j.jphotochem.2023.115308
dc.identifier.urihttps://hdl.handle.net/11452/44366
dc.identifier.volume448
dc.identifier.wos001107094500001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier Science Sa
dc.relation.bapFOA-2021-630
dc.relation.journalJournal Of Photochemistry And Photobiology A-chemistry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak118M617
dc.relation.tubitak218M275
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAtomic layer deposition
dc.subjectMachine learning
dc.subjectAtomic layer deposition
dc.subjectPhotocatalysis
dc.subjectZno
dc.subjectFibers
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectChemistry, physical
dc.subjectChemistry
dc.titleA machine learning approach for the estimation of photocatalytic activity of ald zno thin films on fabric substrates
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication1b0a8078-edd4-454b-b251-2d465c101031
relation.isAuthorOfPublication.latestForDiscovery1b0a8078-edd4-454b-b251-2d465c101031

Files

Collections